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1. Introduction

In the long history of the study of Nambu bracket [1], the relation with the supermem-

brane or M-theory has been giving the main motivation (see [2] for the references). There

have been many attempts to quantize the classical Nambu bracket toward this direction.

However, since the quantization is difficult and does not seem to be unique, we need to

understand which properties are essential from the physical viewpoint.

Recently Bagger and Lambert [3 – 5] and Gustavsson [6] proposed a formalism of mul-

tiple M2-branes and it was found that the generalized Jacobi identity (or the fundamental

identity) for Lie 3-algebra is essential to define the action with N = 8 supersymmetry. It

seems to give the desired principle of constructing quantum Nambu bracket which has been

long sought for. So far the only explicit example of Lie 3-algebra ever considered for the

Bagger-Lambert model is A4, the SO(4)-invariant algebra with 4 generators.1 For a more

concrete understanding of the Bagger-Lambert model, it is urgent to study more explicit

examples of Lie 3-algebra. In the mathematical literature, the Lie 3-algebra (also known

as Filippov algebra) is not new [9], and its structure has been studied to some extent.

However, not only that the complete classification of the algebra does not exist, there are

very few explicit examples in the literature.

In this paper, we first endeavor to find new examples of Lie 3-algebra (section 2). After

a survey of the mathematical literature, especially the study of Nambu-Poisson bracket,

interestingly, we successfully find several new examples (section 3). All the new examples

have one important feature in common, namely that their metrics are not positive-definite.

In this respect they are very different from A4. We also tried to search for solutions of

the fundamental identity with positive-definite metrics by computer when the number of

generators are small (n = 5, 6, 7, 8), and found that there are no algebras except for A4 and

its direct sum. We are led to make the conjecture that there are no other 3-algebras with

a positive definite metric. Generators of zero norm are almost ubiquitous in 3-algebras.

In section 4, we consider the problem of realizing Lie 3-algebras using cubic matrices.

As an example, we consider cubic-matrix representations for A4, and try to develop a sys-

tematic method to generate higher dimensional representations. In the case of Lie algebra, a

simple method to derive higher dimensional representations is to use the tensor product and

then to decompose it into irreducible representations. Here we show that we can do similar

construction of higher dimensional representations by tensor product. One can define the

notion of irreducibility similarly, although we need to redefine the product of cubic matrices.

In section 5, we review Basu-Harvey equation, and demonstrate that its success in

describing the configuration of multiple M2-branes ending on an M5-brane does not reply

on the specific realization of the 3-algebra as it was originally considered. We only need

the 3-algebra structure for the calculation. We also comment on its relation to the Bagger-

Lambert model. A few comments about future directions are made in section 6.

In appendix A, we point out the relation between the fundamental identity and the

Plücker relation. The latter appeared frequently in the literature of the exactly solvable

system, matrix model and topological strings.

1See also Kawamura’s work [7, 8] where the same algebra and its representation was studied.
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2. Lie n-algebra

2.1 Definitions

Lie n-algebra, also known as n-ary Lie algebra, or Filippov n-algebra [9], is a natural

generalization of Lie algebra. For a linear space V = {∑D
a=1 vaTa; va ∈ C} of dimension D,

a Lie n-algebra structure is defined by a multilinear map called Nambu bracket [·, · · · , ·] :

V⊗n → V satisfying the following properties2

1. Skew-symmetry:

[Aσ(1), · · · , Aσ(n)] = (−1)|σ|[A1, · · · , An]. (2.1)

2. Fundamental identity:

[A1, · · · , An−1, [B1, · · · , Bn]] =
n
∑

k=1

[B1, · · · , Bk−1, [A1, · · · , An−1, Bk], Bk+1, · · · , Bn].

(2.2)

The fundamental identity is also called the generalized Jacobi identity. It means that

the bracket [A1, · · · , An−1, ·] acts as a derivative on V, and it may be used to represent a

symmetry transformation.

In terms of the basis, n-algebra is expressed in terms of the (generalized) structure

constants,

[Ta1 , · · · , Tan ] = ifa1···an

b Tb (2.3)

The fundamental identity implies a bilinear relation the structure constants,

∑

c

fb1···bp

cfa1···ap−1c
d =

∑

i

∑

c

fa1···ap−1bi

cfb1···c···bp

d . (2.4)

One may introduce the inner product in the space of algebra A as a bilinear map from

V × V to C

〈Ta, Tb〉 = hab . (2.5)

We will refer to the symmetric tensor hab as the metric in the following. As a generaliza-

tion of the Killing form in Lie algebra, we require that the metric is invariant under any

transformation generated by the bracket [Ta1 , · · · , Tan−1 , ·]:

〈[Ta1 , · · · , Tan−1 , Tb], Tc〉 + 〈Tb, [Ta1 , · · · , Tan−1 , Tc]〉 = 0. (2.6)

This implies a relation for the structure constant

hcdfa1···an−1b
d + hbdfa1···an−1c

d = 0 . (2.7)

2In part of the literature [10], the fundamental identity (2.2) is replaced by a weaker (skew-symmetrized)

version, and thus the definition of Lie n-algebra is ambiguous. The definition we consider here is more closely

related to the physical applications we will consider below. See also [11] for various aspects of the classical

and quantum Nambu bracket.
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Therefore the tensor

fa1···an ≡ fa1···an−1
bhban

(2.8)

is totally antisymmetrized.

For applications to physics, it is very important to have a nontrivial metric hab in order

to write down a Lagrangian or physical observables which are invariant under transforma-

tions defined by n-brackets.

Another mathematical structure of physical importance is Hermitian conjugation. A

natural definition of the Hermitian conjugate of an n-bracket is

[A1, · · · , An]† = [A†
n, · · · , A†

1]. (2.9)

This relation determines the reality of structure constants. For the usual Lie algebra, if we

choose the generators to be Hermitian, the structure constants fab
c are real numbers, and

if the generators are anti-Hermitian, the structure constants are imaginary. This is not the

case for 3-brackets. The structure constants are always imaginary when the generators are

all Hermitian or all anti-Hermitian. In general, for n-brackets, the structure constants are

real if n = 0, 1 (mod 4), and imaginary if n = 2, 3 (mod 4) for Hermitian generators. The

structure constants are multiplied by a factor of ±i when we replace Hermitian generators

by anti-Hermitian ones only for even n.

From now on we will focus on the case of n = 3. Explicitly, for 3-algebra the funda-

mental identity (2.2) is

[A1, A2, [B1, B2, B3]] = [[A1, A2, B1], B2, B3] + [B1, [A1, A2, B2], B3] + [B1, B2, [A1, A2, B3]].

(2.10)

In terms of the structure constant, the fundamental identity is
∑

i

fcde
ifabi

j =
∑

i

(

fabc
ifide

j + fabd
ifcie

j + fabe
ifcdi

j
)

. (2.11)

One of the important questions is how to classify the solutions of the fundamental

identity (2.11) (or more generally (2.4)). The trivial solution is to put all structure con-

stants zero fabc
d = 0. The simplest nontrivial solution which satisfy the fundamental

identity (2.11) of 3-algebra starts from D = 4,

[Ta, Tb, Tc] = iǫabcdTd, (a, b, c, d = 1, 2, 3, 4), (2.12)

and the metric is fixed by the requirement of invariance (2.7) to be

hab = δab (2.13)

up to an overall constant factor. Compared with the formula in some literature, we have

an extra factor of i on the right hand side of (2.12) due to our convention of the Nambu

bracket’s Hermiticity (2.9).

This algebra is invariant under SO(4), and will be denoted as A4. The structure

constant is given by the totally antisymmetrized epsilon tensor fabc
d = i ǫabcd. In general,

for any n, the fundamental identity (2.4) is solved by the epsilon tensor in D = n+ 1,

fa1···an

b = i ǫa1···anb , (2.14)
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with the metric (2.13).

From these algebras, one may obtain higher rank algebras by direct sum as usual. For

n = 3 case, the algebra A4 ⊕ · · · ⊕ A4 (p-times) with D = 4p is written as,

[T (α)
a , T

(β)
b , T (γ)

c ] = iǫabcdδαβγδT
(δ)
d , (2.15)

(a, b, c, d = 1, 2, 3, 4, α, β, γ, δ = 1, · · · , p) ,

where δαβγδ = δαβδαγδαδ .

A nontrivial question is whether there exists any 3-algebra which can not be reduced

to the direct sums of the algebra A4, up to a direct sum with a trivial algebra. For n = 3,

one may directly solve the fundamental identity by computer for lower dimensions D. We

have examined the cases D = 5, 6, 7, 8 with the assumption that the metric hab is invertible

and can be set to δab after the change of basis. In this case the structure constant fabc
d

can be identified with totally anti-symmetric four tensor fabcd.

For D = 5, 6, one can solve directly the fundamental identity algebraically by computer.

For D = 7, 8, we assume the coefficients fabcd are integer and |fabcd| ≤ 3 and scanned all

possible combinations. After all, the solutions can always be reduced to A4 up to a direct

sum with a trivial algebra, or A4 ⊕A4 (D = 8) after a change of basis.3 This observation

suggests that the Lie n-algebra for n > 2 is very limited.

Actually there is an interesting relation between the fundamental identity and the

Plücker relation (for the Grassmaniann manifold), which will be explained in the appendix.

It automatically tells us that the epsilon tensor is the solution of the fundamental identity

for Lie n-algebra in general. At the same time, it also implies that to find other solutions

are very difficult.

While very little is known about explicit nontrivial examples of the n-algebra, its

correspondence with Nambu-Poisson brackets given in section 2.2 is very helpful.

If the metric is not invertible, it becomes possible to construct Lie 3-algebra other than

the direct sum of A4. We will construct some examples in section 3.

2.2 Review of Nambu-Poisson brackets

Let Md be a manifold of d dimensions, and C(Md) its algebra of functions. A Nambu-

Poisson bracket is a multi-linear map from C(Md)
⊗3 to C(Md) that satisfies the following

conditions [13]:

1. Skew-symmetry:

{fσ(1), fσ(2), fσ(3)} = (−1)|σ|{f1, f2, f3}. (2.17)

3One of the failed examples is,

7
X

a,b,c,d=1

fabcdea ∧ eb ∧ ec ∧ ed = e1 ∧ e2 ∧ e3 ∧ e4 + e1 ∧ e2 ∧ e5 ∧ e6 − e1 ∧ e3 ∧ e5 ∧ e7

+ e1 ∧ e4 ∧ e6 ∧ e7 + e2 ∧ e3 ∧ e6 ∧ e7 + e2 ∧ e4 ∧ e5 ∧ e7 + e3 ∧ e4 ∧ e5 ∧ e6 (2.16)

for D = 7. This is the Hodge dual of G2-invariant 3-form. It was also mentioned in [12].
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2. Leibniz rule:

{f1, f2, gh} = {f1, f2, g}h + g{f1, f2, h}. (2.18)

3. Fundamental identity:

{g, h, {f1, f2, f3}} = {{g, h, f1}, f2, f3} + {f1, {g, h, f2}, f3} + {f1, f2, {g, h, f3}}.
(2.19)

The prototype of a Nambu-Poisson bracket is the Jacobian determinant for 3 variables

xi(i = 1, 2, 3)

{f1, f2, f3} = ǫijk∂if1∂jf2∂kf3. (2.20)

where i, j, k = 1, 2, 3. This is the classical Nambu bracket. More general Nambu-Poisson

bracket can be written in terms of the local coordinates as,

{f1, f2, f3} =
∑

i1<i2<i3

∑

σ∈S3

(−1)σPi1i2i3(x)∂iσ(1)
f1∂iσ(2)

f2∂iσ(3)
f3. (2.21)

It is proved that one can always choose coordinates such that any Nambu-Poisson

bracket is locally just a Jacobian determinant [14]. Locally we can choose coordinates such

that

{f, g, h} = ǫijk∂if ∂jg ∂kh, (2.22)

where i, j, k = 1, 2, 3, and dx1dx2dx3 defines a local expression of the volume form. As

a result, it is straightforward to check that the Nambu-Poisson bracket can be used to

generate volume-preserving diffeomorphisms on a function f

δf = {g1, g2, f} (2.23)

specified by two functions g1 and g2.

A Nambu-Poisson algebra is also an infinite dimensional Lie 3-algebra. For a 3-manifold

on which the Nambu-Poisson bracket is everywhere non-vanishing, it is natural to use the

volume form picked by the bracket to define an integral
∫

M, and then the metric can be

defined by

〈f, g〉 =

∫

M
fg. (2.24)

Symmetries of the algebra are then automatically preserved by the metric.

The notion of Nambu-Poisson brackets can be naturally generalized to brackets of

order n, as a map from C(Md)
⊗n to C(Md). The fundamental identity for Nambu-Poisson

brackets of order n is

{f1, · · · , fn−1, {g1, · · · , gn}} =
n
∑

k=1

{g1, · · · , gk−1, {f1, · · · , fn−1, gk}, gk+1, · · · , gn}. (2.25)

Both the Leibniz rule and the fundamental identity indicate that it is natural to think of

{f1, · · · , fn−1, · } : C(Md) → C(Md) (2.26)

– 6 –
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as a derivative on functions.

Each Nambu-Poisson bracket of order n corresponds to a Nambu-Poisson tensor field

P through the relation

{f1, · · · , fn} = P (df1, · · · , dfn), (2.27)

P =
∑

i1<···<in

Pi1···in(x)∂i1 ∧ · · · ∧ ∂in . (2.28)

The theorem mentioned above can also be generalized to brackets of order n, which means

that any Nambu-Poisson tensor field P is decomposable, i.e., one can express P as

P = V1 ∧ · · · ∧ Vn (2.29)

for n-vector fields Vi. For a review of Nambu-Poisson brackets see, e.g. [15].

Let us now focus on the case n = 3. When all the coefficients of the Nambu-Poisson

tensor field are linear in x, that is, Pi1i2i3(x) =
∑

j fi1i2i3
jxj for constant fi1i2i3

j , we call

the bracket a linear Nambu-Poisson bracket, and it takes the form of a Lie 3-algebra on

the coordinates

{xi, xj , xk} =
∑

l

fijk
lxl. (2.30)

Apparently, a linear Nambu-Poisson bracket is also a Lie 3-algebra when we restrict our-

selves to linear functions of the coordinates xi. We have to be careful, however, in that the

reverse is not true, as they also have some differences. For the Nambu-Poisson bracket, one

may change the coordinates by a general coordinate transformation. On the other hand,

for Lie 3-algebra, we only allow linear transformations of the basis. Since the requirement

of Leibniz rule for the Nambu-Poisson bracket is not imposed on a Lie 3-algebra, we ex-

pect that only a small fraction of Lie 3-algebras are also linear Nambu-Poisson algebras.

In particular, we do not expect that the Nambu bracket of a generic Lie 3-algebra be

decomposable.

It has been shown that any linear Nambu-Poisson tensor of order n on a linear space

Vd can be put in one of the following forms by choosing a suitable basis of Vd [16]:

1. Type I:

P(r,s) =

r+1
∑

j=1

±xj∂1 ∧ · · · ∧ ∂j−1 ∧ ∂j+1 ∧ · · · ∧ ∂n+1 (2.31)

+

s
∑

j=1

±xn+j+1∂1 ∧ · · · ∧ ∂r+j ∧ ∂r+j+2 ∧ · · · ∧ ∂n+1,

where −1 ≤ r ≤ n, 0 ≤ s ≤ min(d− n− 1, n − r). Explicitly, we have

{x1, · · · , xj−1, xj , · · · , xn+1} =











±xj, 1 ≤ j ≤ r + 1,

±xj−r+3, r + 2 ≤ j ≤ r + s+ 1,

0, r + s+ 2 ≤ j ≤ d.

(2.32)

– 7 –
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2. Type II:

P = ∂1 ∧ · · · ∧ ∂n−1 ∧





d
∑

i,j=n

aijxi∂j



 . (2.33)

In other words,

{x1, · · · , xn−1, xj} =
d
∑

i=n

aijxi, j = n, · · · , d. (2.34)

Here the choice of coordinates is made such that the Nambu-Poisson tensor field is

linear, instead of trying to make its decomposability manifest. When we interpret these

brackets as Nambu brackets on the linear space generated by {xi}, we are no longer allowed

to make general coordinate transformations on the generators xi, and the decomposability

of the Nambu-Poisson tensor field is no longer relevant.

3. Examples of Lie 3-algebra

We already know a few examples of Lie 3-algebra which satisfies the fundamental identity.

• A trivial algebra is one for which the Nambu bracket is always 0.

• The 4-generator algebra with SO(4) symmetry A4.

• Direct sums of an arbitrary number of copies of A4 and a trivial algebra.

• All Nambu-Poisson brackets on C(Md) are of course also Nambu brackets on the

infinite dimensional linear space C(Md).

In the following, we list a few more examples of Lie 3-algebra. In contrast with previous

studies on this problem, we put relatively more emphasis on the metric, which is crucial

for writing down an invariant observable or Lagrangian.4 Besides A4, the only well known

example of 3-algebra is the class constructed in [19]. However, as we will show below in

section 3.3, the invariant metric is almost trivial in those cases.

3.1 Linear Nambu-Poisson bracket: type I

First, since any linear Nambu-Poisson bracket is also a Lie 3-algebra, the classification of

the last subsection gives type I and type IIalgebras.

A type I linear Nambu-Poisson bracket P(r,s) (2.31), (2.32) is labeled by a pair of

integers (r, s). P(3,0) in (2.31) with plus signs for n = 3 gives A4 algebra. For other values

of (r, s), P(r,s) gives a new algebra.

For example, P(−1,4) defines an algebra with 8 generators (apart from direct sum with

a trivial algebra)

[T2, T3, T4] = ±T5, [T1, T3, T4] = ±T6, [T1, T2, T4] = ±T7, [T1, T2, T3] = ±T8. (3.1)

4However, [18] suggests that we study the Bagger-Lambert model only at the level of equations of motion,

which can be described without a metric.
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Without loss of generality, we can take all plus signs above, and an invariant metric is

given by

h15 = −h26 = h37 = −h48 = K (3.2)

for some constant K. The metric is thus non-degenerate with the signature (+ + + +−−
−−).

Another example is P(1,1), which is defined by

[T2, T3, T4] = −T1, [T1, T3, T4] = ǫT2, [T1, T2, T4] = T5, [T1, T2, T3] = T6, (3.3)

where we have fixed the signs except ǫ = ±1 by convention. The invariant metric is given

by

h11 = ǫh22 = h35 = −h46 = 1, (3.4)

while other components of h vanish.

3.2 Linear Nambu-Poisson bracket: type II

The linear Nambu-Poisson algebra of type II (2.33), (2.34) for arbitrary constant matrix

aij has the Nambu bracket

[T1, T2, Tj ] =

d
∑

i=3

aijTi (j = 3, · · · , d) . (3.5)

The invariance of the metric implies that

hi1 = hi2 =

d
∑

i=3

hjiaik = 0 (3.6)

for i, j, k = 3, · · · , d. Thus a = 0 if h is invertible. Conversely, if a is invertible then hij = 0

for i, j = 3, · · · , d. As T1 and T2 do not appear on the right hand side of the Nambu

bracket, there is no constraint on h11, h12 or h22.

As Nambu-Poisson brackets, we can extend the 3-algebra on the space of linear func-

tions V = {∑d
i=1 aiTi} to all polynomials of Ti’s. The product of Ti’s defines a commutative

algebra.

3.3 One-generator extension of a Lie algebra

In addition, we may construct other examples. For a given Lie algebra G with generators Ta

and structure constants fab
c, we can introduce a new element T0 and define a Lie 3-algebra

by [20]

[T0, Ta, Tb] = fab
cTc, (3.7)

[Ta, Tb, Tc] = 0 (3.8)

for a, b, c = 1, · · · ,dim G. For a simple Lie algebra G, the invariance of the metric demands

that

〈[T0, Ta, Tb], Tc〉 + 〈Tb, [T0, Ta, Tc]〉 = 0 ⇒ fab
dhdc + fac

dhdb = 0. (3.9)

– 9 –
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This suggests that hab should be proportional to the Killing form of G. However, the

invariance conditions also include

〈[Ta, Tb, Tc], T0〉 + 〈Tc, [Ta, Tb, T0]〉 = 0 ⇒ fab
dhdc = 0,

〈[Ta, Tb, T0], T0〉 + 〈T0, [Ta, Tb, T0]〉 = 0 ⇒ hc0 = 0. (3.10)

Therefore, we can not use the Killing form of the Lie algebra G as hab, but instead the

metric should be taken as

hab = h0a = 0, h00 = K, a, b = 1, · · · ,dim G, (3.11)

where K is an arbitrary constant.

If the Lie algebra G can be realized as a matrix algebra, this 3-algebra can also be

extended to polynomials of Ta’s. (That is, we extend the Lie algebra G to its universal

enveloping algebra.) We can define the Nambu bracket by

[T0, A,B] = [A,B] ≡ AB −BA, [A,B,C] = 0, (3.12)

where A,B,C are elements of the matrix algebra. The Leibniz rule follows from this

definition5

[T0, A,BC] = [T0, A,B]C +B[T0, A,C]. (3.13)

However, it is not possible for the Leibniz rule to apply to products involving T0.

This 3-algebra has a close connection with the Nambu bracket defined in [19]. For a

matrix algebra, the Nambu bracket in [19] is defined as

[A,B,C] = tr(A)[B,C] + tr(B)[C,A] + tr(C)[A,B]. (3.14)

This Nambu bracket is automatically skew-symmetric and satisfies the fundamental iden-

tity. For a matrix algebra, we can choose the basis of generators such that there is only

one generator, the identity I, that has a non-vanishing trace. Denoting T0 = I/tr(I), and

the rest of the generators as Ta (a 6= 0), the Nambu bracket is precisely given by (3.7)

and (3.8). Thus we see that the Nambu bracket of [19] is equivalent to the 3-algebra in

this subsection for the case when G is a matrix algebra of traceless matrices.

3.4 A truncation of Nambu-Poisson structure on S3

The classical Nambu bracket

{f1, f2, f3} = xi ǫijkl ∂jf1 ∂kf2 ∂lf3 (3.15)

defines a Nambu-Poisson bracket with SO(4) symmetry on the space of all polynomials of

{xi : i = 1, · · · , 4} to all order. Based on this we define a Nambu bracket which is restricted

to polynomials of order no larger than N as

[Xi1···il ,Xj1···jm,Xk1···kn
] =

{

{Xi1···il ,Xj1···jm,Xk1···kn
}, l +m+ n− 2 ≤ N,

0, l +m+ n− 2 > N,
(3.16)

5Note that here the ordering of the product on the right hand side is important, unlike the case of a

Nambu-Poisson algebra.
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where the generators X are monomials of order l ≤ N

Xi1···il = xi1 · · · xil . (3.17)

The case with N = 1 is precisely A4. As N → ∞, this algebra approaches to a classical

Nambu-Poisson structure on C(R4).

As the Nambu-Poisson algebra (3.15) is known to observe the fundamental identity, we

only need to check that the truncation rule is compatible with it. Note that each term in

the fundamental identity is of the form [A1, A2, [A3, A4, A5]]. Let each Ai to be a monomial

of order ai. Then this term is truncated to zero if a3 +a4 +a5 − 2 > N so that [A3, A4, A5]

is truncated to zero, or if a1 + · · ·+a5−4 > N so that the outer bracket vanishes. However,

since a monomial is at least of order 1,6 we always have

a1 + a2 + a3 + a4 + a5 − 4 ≥ a3 + a4 + a5 − 2, (3.18)

and hence the necessary and sufficient condition for truncation for every term in the fun-

damental identity is the same
5
∑

i=1

ai − 4 > N. (3.19)

Thus the fundamental identity is preserved by the truncation rule.

We can also try to define multiplication by truncating the products of monomials as

Xi1···il ·Xj1···jm =

{

Xi1···ilj1···jm, l +m ≤ N

0, l +m > N.
(3.20)

Again, one can check that the Leibniz rule, which is known to hold for the case N = ∞, is

compatible with the truncation of products at finite N . Indeed, every term in the Leibniz

rule condition

[A1, A2, A3A4] = [A1, A2, A3]A4 + [A1, A2, A4]A3 (3.21)

is truncated if and only if

a1 + a2 + a3 + a4 − 2 > N. (3.22)

To define the metric, it is natural to use the integration over the underlying manifold.

Decomposing the integration over the space of xi into the radial part and the integration

over S3, we define the metric as

〈A1, A2〉 =

∫

S3

d3Ω

∫ ∞

0
drρ(r)A1 ·A2, (3.23)

where we introduced a distribution ρ(r) so that the integrals converge for polynomials of

xi. If we are considering the Nambu structure on a truncated set of functions on S3 of

radius R, we should take ρ(r) = δ(r −R).

6If one of the entries is of order 0 (that is, it is a constant), the Nambu bracket vanishes identically.
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Roughly speaking, treating xi as coordinates on S3 is equivalent to imposing the con-

straint
4
∑

i=1

x2
i = 1 (3.24)

on the algebra of polynomials of xi’s. Since
∑

i x
2
i is a central element in the 3-algebra, i.e.

[
∑

i

x2
i ,Xi1···il ,Xj1···jm ] = 0, (3.25)

this constraint is consistent with the Nambu structure. However, the constraint is not

compatible with the truncation rule for the Nambu bracket (3.16) or the product (3.20).

Thus we should not impose the constraint except when we compute the metric. The metric

of 〈A,B〉 should be computed by first multiplying A · B with the truncation (3.20), and

then treating the product as a classical function on S3 and integrate.

It is easy to see the the metric defined this way is not positive definite. Consider the

norm of A = x1 − axm
1 , where m is an odd number between N/2 + 1 and N − 1. Its norm

is

〈A,A〉 =

∫

S3

x2
1 − 2a

∫

S3

xm+1
1 , (3.26)

where the term 〈xm
1 , x

m
1 〉 is absent because xm

1 · xm
1 = 0 according to (3.20). While both

terms on the right hand side are non-zero, one can choose a to be sufficiently large so that

the norm is negative.

3.5 An Extension of A4

An algebra with 4(N + 1) generators {T (a)
i : a = 0, · · · , N, i = 1, · · · , 4} can be defined by

[T
(a)
i , T

(b)
j , T

(c)
k ] =

{

ǫijkl T
(a+b+c)
l , a+ b+ c ≤ N,

0, a+ b+ c > N.
(3.27)

To check that the Nambu bracket (3.27) preserves the fundamental identity, we only

need to check that the truncation rule is compatible with the fundamental identity, since

this bracket is essentially just a grading of direct sums of A4. For a term in the fundamental

identity

[T
(a)
i , T

(b)
j , [T

(c)
k , T

(d)
l , T (e)

m ]], (3.28)

we note that it is truncated if c + d + e > N2 (so that the inner bracket is zero), or if

a+ b+ c+d+ e > N (so that the outer bracket is zero). However, since a, b ≥ 0, we always

have a+ b+ c+ d+ e > c+ d+ e, and thus the necessary and sufficient condition for this

term to be truncated to zero is just a+ b+ c+ d+ e > N . Since this condition is the same

for all terms in the fundamental identity, the fundamental identity is preserved.

One can further extend the 3-algebra form the linear space spanned by T
(a)
i ’s to poly-

nomials of the generators truncated at order N . Let

T
(a)
i T

(b)
j =

{

T
(b)
j T

(a)
i , a+ b ≤ N,

0, a+ b > N.
(3.29)
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The space of polynomials of T
(a)
i ’s is thus spanned by the monomials {T (a1)

i1
· · ·T (ak)

ik
:

∑k
r=1 ar ≤ N}. The Nambu bracket on this space can be defined by imposing the Leibniz

rule

[A(a), B(b), C(c)D(d)] = [A(a), B(b), C(c)]D(d) + [A(a), B(b),D(d)]C(c), (3.30)

where A(a) is a monomial T
(a1)
i1

· · · T (ak)
ik

of level
∑k

r=1 ar = a, etc. Note that the truncation

rule of every term above is that each term vanishes if and only if a+ b+ c+ d ≥ N .

For a given function f(a) with the property

f(a) = 0 for a > N, (3.31)

the invariant metric can be defined as

〈T (a)
i , T

(b)
j 〉 = f(a+ b)δij for a, b = 0, · · · , N, i, j = 1, · · · , 4. (3.32)

Apparently all generators of level a > N/2 are null.

3.6 Truncation of a Nambu-Poisson algebra

While Nambu-Poisson algebras are always Lie 3-algebras of infinite dimensions, it is some-

times possible to truncate the Nambu-Poisson algebra to a finite dimensional Lie 3-algebra.

We have seen such an example in section 3.4. In fact, the same can be done for all linear

Nambu-Poisson algebras. Starting with a linear Nambu-Poisson algebra, one can impose a

truncation over monomials of the coordinates of order larger than N . The reason why this

is a consistent truncation for the Nambu bracket is essentially the same as the arguments

in section 3.4.

3.7 Level extension of a 3-algebra

In the above we have seen that the notion of an additive level can be introduced to extend

a given 3-algebra to a larger algebra. More precisely, given a 3-algebra

[Ti, Tj , Tk] = fijk
lTl, (3.33)

with an invariant metric hij , we can define a new 3-algebra for generators T
(a)
i (a =

N1, · · · , N2 with N1 ≥ 0)

[T
(a)
i , T

(b)
j , T

(c)
k ] = fijk

lT
(a+b+c)
l . (3.34)

When N1 = 0 the original 3-algebra is embedded at level 0.

A nontrivial choice of the metric is

〈T (a)
i , T

(b)
j 〉 = f(a+ b)hij , (3.35)

for an arbitrary function f(a) such that

f(a) = 0 for a > N1 +N2. (3.36)
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To check that this is invariant, we note that

〈[T (a)
i , T

(b)
j , T

(c)
k ], T

(d)
l 〉+〈T (c)

k , [T
(a)
i , T

(b)
j , T

(d)
l ]〉 = (fijk

mhml+fijl
mhmk)f(a+ b+ c+ d) = 0,

(3.37)

whenever there is no truncation in both terms. When there is a truncation, we either have

a + b + c > N2 or a + b + d > N2. This implies that a + b + c + d > N1 + N2, and the

equality above still holds because f(a+ b+ c+ d) = 0.

This is not the most general solution for the invariant metric. While generators T
(a)
i at

level a < 3N1 can never appear on the right hand side of a Nambu bracket, it is impossible

to write down any constraint for the metric components 〈T (a)
i , T

(b)
j 〉 with a, b < 3N1. Those

components are thus arbitrary.

3.8 A conjecture

The reason why examples of 3-algebra are so rare can be intuitively understood by not-

ing the resemblance between the fundamental identity and the Plücker relation when a

positive-definite metric is assumed. In the appendix we give a more detailed analysis of the

fundamental identity with an effort to make its connection to the Plücker relation more

manifest. We hope this will help us understand the fundamental identity better in the

future.

In [21] it was conjectured that an n-algebra is always a direct product of n-algebras

of dimension n and (n + 1) and some trivial algebras. This conjecture is ruled out by

some of the examples listed above. On the other hand, except A4 and the trivial algebra

(and their direct products), none of the examples we have so far has a metric which is

positive definite. All of them have generators of zero-norm. Hence we conjecture that all

finite dimensional 3-algebras with positive-definite metrics are direct products of A4 with

trivial algebras. In other words, except direct products of A4 with trivial algebras, all finite

dimensional 3-algebras have generators of zero-norm.

A weaker form of the conjecture has already been studied in [22]. There it was shown

that nontrivial finite-dimensional generalization of A4, which is associated to the Lie algebra

SO(4) ≃ SU(2) × SU(2), to other semi-simple Lie algebras is essentially impossible.

For an algebra with a positive-definite metric, we can always choose a new basis of

generators such that the metric is the identity matrix δab. It follows from the invariance of

the metric

〈[Ta, Tb, Tc], Td〉 + 〈Tc, [Ta, Tb, Td]〉 = 0 (3.38)

that

fabcd = −fabdc (fabcd ≡ fabc
ehed). (3.39)

Since the structure constants are by definition skew-symmetric with respect to the first 3

indices, in this case the 3-algebra structure constants are totally-antisymmetrized.

Assuming that the structure constants are totally-antisymmetrized, we checked using

computers that all 3-algebras with no more than 8 generators are either trivial or are a

direct product of the 4-generator algebra A4 with a trivial algebra.
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The almost unavoidable appearance of the zero-norm (or null) generators is very in-

teresting from the viewpoint of physical applications. For a dynamical variable X living in

the space of a 3-algebra with generators {TA},

X = XATA, (3.40)

its canonical kinetic term

〈∂µX,∂µX〉 (3.41)

there is no quadratic term for XA if TA is a null generator. Hence the degrees of freedom

associated with the zero-norm generators are not dynamical. They can be integrated

out and their equations of motion are constraints. Therefore, each zero-norm generator

corresponds to a gauge symmetry. Similarly, a negative norm generator corresponds to a

ghost.

Infinite dimensional algebras with positive definite metrics are easy to construct. As

we mentioned in section 2.2, for any Nambu-Poisson structure on the algebra C(M3) of

functions on a 3-dimensional space M3, the Nambu-Poisson tensor field defines a volume

form on M3, which can be used to define an integral and then a metric. Whenever the

volume form is everywhere non-vanishing, this metric is positive definite.

4. Representations of Nambu bracket by cubic matrix

4.1 Motivation

We would like to study representations of the Lie 3-algebra in this section. The first

question is whether it is possible to represent the generators as matrices, which form an

associative algebra. A natural definition of the quantum Nambu bracket is [1, 13]

[A,B,C] = ABC −ACB +BCA−BAC + CAB − CBA (4.1)

for an associative algebra with elements A,B,C. For the algebra A4, there are represen-

tations of arbitrary dimension N ≥ 2 [8] based on the N × N irreducible representation

of su(2). Let J i (i = 1, 2, 3) be the N = 2j + 1 dimensional irreducible representation of

su(2), then

R(T i) =
1

(j(j + 1))1/4
J i, R(T 4) = (j(j + 1))1/4I, (4.2)

where i = 1, 2, 3 and I is the unit matrix, is a representation of A4.

A problem with this representation is that the eigenvalues of R(T 4) are fully degener-

ate. Interpreting R(T i) as some sort of quantum coordinates of R
4, the geometric picture

of this algebra is a fuzzy 2-sphere embedded in R
4, with its 4-th coordinate fixed by

x4 = (j(j + 1))1/4. (4.3)

On the other hand, in the physical applications we have in mind, one would like to interpret

A4 as a fuzzy 3-sphere.
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Formally, A4 is a generalization of su(2). While the adjoint representation of su(2) is

(Ji)jk = ǫijk, (4.4)

one is tempted to conjecture that for A4 we have a representation of the form

R(T i)jkl ∼ ǫijkl. (4.5)

This is not exactly correct but we do have a representation of a similar form, which will

be given below in (4.14). The point here is that although our lives would be much easier if

we could just use matrices to represent Lie 3-algebras, but for the example of A4, it seems

more appropriate to use objects with 3 indices.

There is also some physical motivation suggesting the use of cubic matrices. A long-

standing puzzle about the low energy theory of coincident M5-branes is the following. In

analogy with the case of D-branes, we imagine that cylindrical open membranes stretched

between 2 M5-branes account for the low energy fields on M5-branes, and thus the low

energy effective theory of N M5-branes is expected to be a non-Abelian gauge theory with

N2 degrees of freedom. On the other hand, anomaly and entropy computations suggest that

the M5-brane world-volume theory has N3 degrees of freedom [25]. Recently, arguments

were presented based on considerations of membrane scattering amplitudes in the large C

limit, suggesting that the dominating configuration of membranes connecting M5-branes

is not a cylindrical M2-brane stretched between 2 M5-branes, but rather a triangular M2-

brane stretched among 3 M5-branes [23]. The low energy fields on M5-branes should

hence appear as objects with 3 indices. As a supporting evidence, BPS configurations of

membranes stretched among 3 M5-branes were found in [26]. Therefore it is natural to

introduce cubic matrices Xi
αβγ , i = 1, 2, 3, 4 and α, β, γ = 1, . . . , N , to represent the spatial

coordinates of open membranes with boundaries divided into 3 sections belonging to 3

M5-branes (αβγ).

4.2 Realization by cubic matrices

Cubic matrices were introduced in [7, 8]. A cubic matrix is an object with 3 cyclic indices

Aijk = Ajki = Akij. (4.6)

A triplet product of cubic matrices is defined as

(A,B,C)ijk =
∑

l

AlijBlkiCljk. (4.7)

While Einstein’s summation convention sums over indices repeated twice, we will only sum

over indices repeated thrice.7 The Hermitian conjugation is defined by

A†
ijk = A∗

kji, (4.8)

7Because of this property, this triplet product is not invariant under the rotation (or the unitary trans-

formation) of the indices. It motivates us to introduce a generalized product in section 4.5.
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and the inner product of two cubic matrices by

〈A|B〉 ≡
∑

ijk

A∗
ijkBijk. (4.9)

Note that we used slightly different notations for the inner product for cubic matrices 〈·|·〉
and the inner product for 3-algebra 〈·, ·〉.

The cubic matrix algebra has some interesting properties. For example, it can be

used to give a formulation of the generalized uncertainty relation for 3 observables [8].

The algebra of cubic matrix also naturally arises when we consider the scattering of open

membranes in a large C field background [23].

The Nambu bracket is defined for cubic matrices as

[A,B,C] = (A,B,C) + (B,C,A) + (C,A,B) − (C,B,A) − (B,A,C) − (A,C,B). (4.10)

4.3 Representations for A4

The algebra A4 (2.12) has been studied in the context of cubic matrices as the “generalized

spin algebra” [8].

A 4 × 4 × 4 representation of the algebra (2.12) is

R(T i)jkl =

{

eiΩ
i
jkl for i 6= j 6= k 6= l;

0, otherwise.
(4.11)

Ωi
jkl is anti-symmetric Ωi

jkl = −Ωi
kjl, and cyclic Ωi

jkl = Ωi
klj. They satisfy

Ωi
jkl − Ωj

kli + Ωk
lij − Ωl

ijk =
π

2
ǫijkl. (4.12)

The sign of each term corresponds to the orientation of a face of a tetrahedron. One way

to assign values to Ω’s is

Ωi
jkl =

π

8
ǫijkl. (4.13)

In this case (4.11) can be expressed as

R(T i)jkl = |ǫijkl|eiǫijklπ/8. (4.14)

Obviously R(Ti)’s are all Hermitian.

This representation R has
∑

klm

R(T k)lmiR(T k)lmj = 3!δij , (4.15)

which can be viewed as the analogue of the condition

4
∑

i=1

X2
i = r2 (4.16)

that defines a 3-sphere of radius r in R
4. Therefore it is natural to associate A4 to the

notion of a fuzzy 3-sphere. Note that this algebra is different from the definition of fuzzy

3-sphere in [24].

Representations of arbitrary dimension N > 4 can be found in [8].
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4.4 Construction of higher representations

Here we would like to discuss a question about cubic matrix representations for a generic Lie

3-algebras, that is, how to construct new representations from given representations. Like

the representation by matrices, it is possible to construct higher dimensional representations

by the direct sum and the direct product for the representation by cubic matrices.

Suppose Ri(T
a) (i = 1, 2) is an Ni dimensional cubic matrix which satisfies a given

3-algebra (not necessarily A4). There are several systematic ways to construct new cubic

matrix representations of the same 3-algebras from Ri:

1. Direct sum representation R1 ⊕R2 (N1 +N2 dim):

(R1 ⊕R2(T
a))ijk

=











R1(T
a)ijk if i, j, k ∈ {1, · · · , N1} ,

R2(T
a)i−N1,j−N1,k−N1 if i, j, k ∈ {N1 + 1, · · · , N1 +N2} ,

0 otherwise.

(4.17)

2. Direct product representations R1 ⊗R2 which has dimension N1N2:

(R1 ⊗R2)IJK = (R1(T
a))ijkδi′j′k′ ± δijk(R2(T

a))i′j′k′ , δijk := δijδik . (4.18)

Here I, J,K is the combination of two indices such as I = (i, i′), J = (j, j′), K =

(k, k′). i, j, k are in 1, · · · , N1 and i′, j′, k′ are in 1, · · · , N2. We can take both sign in

the second term since −R2(T
a) is also the representation of the 3-algebra.

3. Tensor product R(T a) ⊗Z with constant cubic matrix Z which satisfies

(Z,Z,Z) = Z. (4.19)

If the size of Z is n × n × n, the dimension of the representation is nN . There are

many choices of Z. Somewhat systematic construction of Z is given later.

By taking the direct product of the fundamental representation of A4, one can obtain

4n dimensional representations systematically.

In the representation theory of matrices, one may use the unitary transformation by

which the representation matrix becomes block diagonal form. This notion, however,

does not have straightforward generalization to the cubic matrices.

Construction of cubic projector Z. Straightforward solutions of (4.19) are the diag-

onal cubic matrices,

Zijk = ziδijk, zi = ±1, 0 . (4.20)

For less trivial solutions, we observe that eq. (4.19) resembles the projector equation.

It motivates us seek solutions of the form,

Zijk = vivjvk (4.21)
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where vi is an vector in n dim space.

By requiring eq. (4.19), we obtain,

(Z,Z,Z)ijk =

(

∑

l

v3
l

)

v2
i v

2
j v

2
k . (4.22)

So if

v2
i =

(

∑

l

v3
l

)−1/3

vi, (4.23)

(4.21) gives a solution to (4.19). The general solution to this is

vi = cǫj , ǫj = ±1, 0, (4.24)

c =

(

∑

i

ǫi

)−1/6

. (4.25)

This construction can be generalized by using r(< n) vectors v
(α)
i (α = 1, · · · , r), where

each v(α) takes the form (4.24) and the cubic orthogonality relation,

∑

i

v
(α)
i v

(β)
i v

(γ)
i ∝ δαβγ . (4.26)

Then,

Zijk =

r
∑

α=1

Z(α)
ijk ,

Z(α)
ijk = v

(α)
i v

(α)
j v

(α)
k (4.27)

(Z(α),Z(β),Z(γ)) =

{

Z(α) if α = β = γ

0 otherwize
(4.28)

satisfies (4.19). One might refer to such Z as rank r cubic projector.

We note that this construction does not give all the cubic projectors. Even for the

2 × 2 × 2 case, a direct algebraic computation by computer shows that there are extra

solutions which do not take this form

4.5 Comments on irreducibility

As mentioned earlier, the non-invariance of the triplet product (4.7) under the rotation

of the indices forces us to introduce a generalization of the product by using a symmetric

cubic matrix K, (Kiσ(1)iσ(2)iσ(3)
= Ki1i2i3),

(A,B,C)ijk =
∑

n,m,l,i′,i′′,j′,j′′,k′,k′′

KnmlAni′j′′Bmk′i′′Clj′k′′Kii′i′′Kjj′j′′Kkk′k′′ (4.29)

where the indices i, j, k, n run from 1 to N . Usually we take Kijk = δijk. We note that there

is no orthogonal transformation which keeps δijk invariant. In the general form above, the
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summations are taken only for doubly repeated indices, so the notion of the orthogonal

transformation remains the same.

Suppose we consider a triplet product algebra such as [Ja, Jb, Jc] = iǫa,b,c,dJ
d, (Ja :=

R(T a)) and try to find “irreducible decomposition”. We introduce the orthogonal projec-

tors pij and qij which satisfy

p2 = p, q2 = q, pt = p, qt = q, pq = 0, p+ q = 1 . (4.30)

We note that such projector may be written as,

p = g

(

Id 0

0 0

)

gt , q = g

(

0 0

0 IN−d

)

gt , g ∈ O(N,R) (4.31)

One may define the algebra be reducible if there exists a pair p, q as above and they

satisfy

∑

ij

(Ja)ijkpii′qjj′ =
∑

jk

(Ja)ijkpjj′qkk′ =
∑

ij

(Ja)ijkpkk′qii′ = 0 , (4.32)

∑

ij

(K)ijkpii′qjj′ =
∑

jk

(K)ijkpjj′qkk′ =
∑

ki

(K)ijkpkk′qii′ = 0 . (4.33)

If these identities are satisfied, we have a d dimensional representation by redefining the

generators and the cubic product at the same time as

Ja → (J̃a)ijk =
∑

i′j′k′

(Ja)i′ij′k′pi′ipj′jpk′k, (4.34)

K → (K̃)ijk =
∑

i′j′k′

(K)i′ij′k′pi′ipj′jpk′k. (4.35)

An example of reducible representation For a given representation Ja, the repre-

sentation J a = Ja ⊗ Z, where Zı̄̄k̄ is written as (4.21), gives an example of the reducible

representation. The projectors are,

pIJ = δij
vı̄v̄
√

|v|2
, qIJ = δij

(

1 − vı̄v̄
√

|v|2

)

. (4.36)

In this sense, the tensor product with the cubic projector gives a good example of the

reducible representation in our sense. We note, however, that the cubic matrices K which

defines the cubic product is not given by the original definition δijk because of eq. (4.35).

Failed example: (anti-)symmetrization In case of the Lie algebra, the tensor product

of two fundamental representations are reducible. Reduction to the irreducible representa-

tion can be obtained by using (anti-)symmetrization of indices. In the following, We will

argue that this will not be so simple for the cubic case.

We consider a direct product representation of two fundamental representations,

Ja
IJK = Ja

ijkδı̄̄k̄ + Ja
ı̄̄k̄δijk (4.37)
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and KIJK = δijkδı̄̄k̄. Here we use the multi-indices I, J,K to represent i, ı̄ and so on.

We define the projections to the symmetric and anti-symmetric part as

pIJ =
1

2
(δijδı̄̄ + δīδı̄j) , qIJ =

1

2
(δijδı̄̄ − δīδı̄j) . (4.38)

It is easy to see that p, q satisfy the constraint (4.30). On the other hand, conditions (4.32)–

(4.33) become

∑

IJ

Ja
IJKpILqJM =

1

4

(

Ja
lmkδl̄m̄k̄ − Ja

lm̄kδl̄mk̄ + Ja
l̄mkδlm̄k̄ − Ja

l̄m̄kδlmk̄

+δlmkJ
a
l̄m̄k̄ − δlm̄kJ

a
l̄mk̄ + δl̄mkJ

a
lm̄k̄ − δl̄m̄kJ

a
lmk̄

)

(4.39)
∑

IJ

δIJKpILqJM =
1

2
(δlmkδl̄m̄k̄ − δlm̄kδl̄mk̄ + δl̄mkδlm̄k̄ − δl̄m̄kδlmk̄) (4.40)

They do not vanish. It implies that the (anti-)symmetrization which works in the con-

struction of the representation of Lie algebra does not work for cubic matrices.

5. Application to multiple M2-branes

5.1 Basu-Harvey equation

Generalizing Nahm’s equation, which was used to describe the analogous configuration of

D1-branes ending on D3-branes, the Basu-Harvey equation was proposed [27] to describe

multiple M2-branes ending on an M5-brane

dXi

ds
+ i

K

3!
ǫijkl[Xj ,Xk,X l] = 0, (5.1)

where Xi(s)’s represent spatial fluctuations of the M2-branes, and s is a worldvolume

coordinate. This equation admits a funnel solution:

Xi(s) = f(s)R(T i), (5.2)

f(s) =
1√
2Ks

, (5.3)

where T i satisfies the SO(4)-invariant algebra A4

[T i, T j , T k] = iǫijklT l, (i, j, k, l = 1, 2, 3, 4, ) (5.4)

and R(T i) is any representation of this algebra.

As we will see below, the Basu-Harvey equation can be interpreted as a BPS condition

for the multiple M2-brane action of Bagger and Lambert [5], although it was first proposed

without an underlying Lagrangian. On the other hand, this particular solution happens to

define a Lie 3-algebra structure. It is possible to proceed for our present purpose without

assuming a particular M2-brane action.
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In order to give a proper geometrical interpretation to this solution, we also need to

assume that the algebra (5.4) of T i describes a fuzzy three-sphere with radius r given by

r2 ≡
∑

i

(Xi)2 ∝ f2(s) ∝ 1

Ks
. (5.5)

Hence

r2 =
α

Ks
(5.6)

for some constant α. The T i’s then represent the Cartesian coordinates of the fuzzy 3-

sphere. Furthremore, infinitesimal SO(4) rotations are generated by

δT k = Λij[T
i, T j , T k], (5.7)

and the invariant metric is

〈T i, T j〉 = δij . (5.8)

The energy proposed in [27] is

E = T2N

∫

d2σ

[

a2

∣

∣

∣

∣

dXi

ds
− i

K

3!
ǫijkl[Xj ,Xk,X l]

∣

∣

∣

∣

2

(5.9)

+

(

1 + i
C

3!
ǫijkl

〈

dXi

ds

∣

∣

∣[Xj ,Xk,X l]

〉)2 ]1/2

,

where |A|2 ≡ 〈A|A〉. We will specify the two constant parameters a and C below.

For Xi = 0 (or more generally when dXi

ds = 0 = [Xj ,Xk,X l]), the energy is that of

N D2-branes at rest: E = T2N times the M2-brane volume. The form of the energy E is

such that the Basu-Harvey equation (5.1) is a BPS condition. One should choose a as

a2 =
C

K
(5.10)

so that the cross-term proportional to 〈dXi

ds |[Xj ,Xk,X l]〉 cancels in (5.9), otherwise the

theory is not covariant.

For the funnel solution (5.2) and (5.3), the energy is

E = T2N

∫

d2σ

∣

∣

∣

∣

1 +
C

K

〈

dXi

ds

∣

∣

∣

dXi

ds

〉∣

∣

∣

∣

= T2NL

∫

ds+ T2NL

∫

ds
C

8K2s3
〈R(Gi)|R(Gi)〉.

(5.11)

According to (5.6),
∫ ∞

0

ds

s3
=

2K2

α2

∫ ∞

0
dr r3, (5.12)

and thus

E/L = T2N

∫

ds+ β

∫

dr r3, (5.13)

where

β = 2T2N
〈R(Gi)|R(Gi)〉

8α2
C. (5.14)
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We should choose C such that

β = 2π2T5, (5.15)

where T5 is the M5-brane tension.

The derivation above goes through without the need of a representation for the bracket

in (5.1). While the constant C can be tuned to give the correct answer, the needed r3

dependence of the 2nd term in E is also guaranteed by the relation (5.6)

r2 ∝ 1

s
, (5.16)

which is a direct result of the fact that the two terms in the Basu-Harvey equation differ

in the order of X by 2.

After choosing C properly to get the correct expression of energy for the M2-M5 system,

K is still a free parameter. But we can always scale X so that K = 1.

In the original work of Basu and Harvey [27], they considered the fuzzy 3-sphere defined

in [24]. What we have shown above is that actually the success of Basu-Harvey equation

does not rely on a particular choice of how the fuzzy 3-sphere algebra (5.4) is realized. All

we need are the general properties of the Lie 3-algebra.

5.2 Multiple M2-brane action

Bagger and Lambert [3 – 5] proposed a supersymmetric Lagrangian for M2-branes for a

given 3-algebra as

L = −1

2
〈DµXI ,DµX

I〉 +
i

2
〈Ψ̄,ΓµDµΨ〉 +

i

4
〈Ψ̄,ΓIJ [XI ,XJ ,Ψ]〉 − V (X) + LCS, (5.17)

where Dµ is the covariant derivative, V (X) is the potential term defined by

V (X) =
1

12
〈[XI ,XJ ,XK ], [XI ,XJ ,XK ]〉, (5.18)

and the Chern-Simons action for the gauge potential is

LCS =
1

2
ǫµνλ

(

fabcdAµab∂νAλcd +
2

3
f cda

gf
efgbAµabAνcdAλef

)

. (5.19)

The SUSY transformation is defined by

δXI
a = iǭΓIΨa, (5.20)

δΨa = DµX
I
aΓµΓIǫ− 1

6
XI

bX
J
c X

K
d f

bcd
aΓ

IJKǫ, (5.21)

δÃµ
b
a = iǭΓµΓIX

I
c Ψdf

cdb
a. (5.22)

While the fundamental identity is needed for the gauge symmetry of the multiple

M2-brane theory, the invariant metric is also necessary to write down the gauge-invariant

Lagrangian.

For the background with Ψ = Ã = 0, a BPS condition should guarantee that
(

∂µX
IΓµΓI − 1

6
[XI ,XJ ,XK ]ΓIJK

)

ǫ = 0 (5.23)
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for some constant spinor ǫ. Assuming that ∂t = ∂σ = 0, for the constant spinor satisfying

(

1 +
i

K
ΓsΓ1234

)

ǫ = 0, (5.24)

the BPS condition is guaranteed if

dXi

ds
+ i

K

3!
ǫijkl[Xj ,Xk,X l] = 0, (5.25)

where the superscript s on Γs denotes the direction in which Xs is identified with the

M2-brane worldvolume coordinate s, and Γ1234 ≡ Γ1Γ2Γ3Γ4, and we also assumed that

XI = 0 except for I = 1, 2, 3, 4. We see that the Basu-Harvey equation is indeed a BPS

condition for this theory if K = ±1 (this can always be achieved by scaling X).

For a solution of the Basu-Harvey equation, the Hamiltonian density of the Bagger-

Lambert model is simply

H = 〈∂sX
I , ∂sX

I〉. (5.26)

This coincides with the Hamiltonian proposed in [27] up to a constant shift and overall

factor.

Although the the connection between the Basu-Harvey equation and the Bagger-

Lambert model begins to be clarified we have an impression that there still remain some

mysteries which should be clarified in the future. Incidentally, apart from the Basu-Harvey

equation, the study of Bagger-Lambert model with boundaries [28] is another approach to

M5-branes from the M2-brane viewpoint.

6. Comments

6.1 Lie 3-Algebra

In this paper we discussed quite a few new examples of Lie 3-algebra of finite dimensions.

Yet we still have the basic problem of lacking any mathematical structure analogous to

the matrix algebra, which guarantees that the commutator defines a Lie algebra. The

fundamental identity appears to be much more restrictive than the Jacobi identity, and we

do not know much about how to solve it.

The truncation of a Nambu-Poisson bracket (sections 3.4, 3.6) can be used to construct

a finite dimensional Lie 3-algebra. While the naive truncation works well, it will be desirable

to find a deformed truncation such that the final 3-algebra possesses better properties. A

possible motivation is to avoid negative norm generators in the algebra. Another example

is that, for the truncated Nambu bracket on S3, the radius constraint x2
i = r2 can not be

imposed until computing the metric. Although the linear dependence among functions will

be fixed by the metric, and thus this will only result in some redundancy of the generators,

similar to what happens when we use an over-complete basis of functions on a manifold, it

would be better if this 3-algebra can be deformed such that the constraint can be imposed

directly on the generators.
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One can apply the general procedures of section 3.7 to a given 3-algebra for an arbitrary

number of times to obtain more and more new examples of Lie 3-algebras. Yet it remains

to be seen how nontrivial these examples will be.

For physical applications to multiple M2-branes, since we want the M2-branes turn

into D2-branes upon compactifying a spatial direction, we hope to associate the su(N)

Lie algebra with a Lie 3-algebra for each N . So far we only know that A2 is associated

with su(2) [29]. In section 3.3, we present a 3-algebra based on an arbitrary Lie algebra.

However its metric is almost trivial. It is most desirable to find Lie 3-algebras associated

to all su(N)’s.

6.2 Cubic matrices

There are a few issues regarding cubic matrices which should be studied further in the

future.

First, in the construction of higher representations, we introduced the direct product.

In case of Lie algebra, such a procedure produces reducible representations and we have to

decompose them to extract the irreducible representations. In order to do similar reduc-

tion, we need to define the corresponding notions of the direct sum representations and the

unitary equivalence between representations, i.e., representations R and R′ are equivalent

if there exists a unitary matrix U such that R′(T ) = UR(T )U †. For cubic-matrix repre-

sentations, it is trivial to see that the direct sum gives a new representation. On the other

hand, in order to define the unitary equivalence, it is natural to use the Nambu bracket

δR = [R,K1,K2], for some K1 and K2, and we need to impose the fundamental identity

in order to preserve the algebraic structure. However, the fundamental identity is not

satisfied for generic elements of the cubic matrices. The subset of cubic matrices which is

known to satisfy the fundamental identity is the set of objects called “normal matrices” [7].

They are, however, an analogue of diagonal matrices and give rise to a trivial change of

the representation.

Second, in this paper, we introduce only the triplet multiplication (4.7). By composing

it, we can generate functions of odd power. This is not sufficient to produce all functions on

a fuzzy space to guarantee a proper classical limit. In order to generate a generic function,

we would need other type of products. As we commented in our previous paper [23], for

such a direction, it will be necessary to introduce objects with more indices Ψi1···in . How

to construct a series of the products consistently remains a big challenge.

6.3 Multiple M2-branes

Recently there is a very interesting paper [29] which proposed a novel Higgs mechanism

for the Bagger-Lambert model [3] so that the multiple M2-brane action reduces to the D2-

brane effective action upon compactification of a spatial coordinate. Later it was realized

that [30 – 32] the moduli space for the model with the A4 algebra does not match with

the moduli space for 2 M2-branes in flat space, but rather it matches with the moduli

space for an orbifold. While this is a success of the Bagger-Lambert model, it is now even

more urgent to consider more examples of 3-algebras for the Bagger-Lambert model to go

beyond a single special case. It will be very interesting to see whether some of the examples
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provided in this work will correspond to a certain physical background for M2-branes in

M theory. It will also be very intriguing to find out the physical interpretation of the

ubiquitous zero-norm generators. In some of the examples there are also negative norm

generators, which can potentially result in ghosts in the model. Perhaps those algebras

with negative norm generators should be dismissed in certain applications, just like we

usually avoid non-compact Lie groups in certain physical problems. It will be interesting

to see whether there are other physical applications of the Lie 3-algebra besides M2-branes

physics.

Note added. After we submitted this paper to arXiv, we are informed that the relation

between the fundamental identity and the Plücker relation was studied in [33] where a

systematic study fundamental identity in D = 5, 6, 7, 8 was also carried out.

We note that there have been substantial developments [34, 35] on the conjecture in

section 3.8 after this paper appeared on the arXiv.
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A. Relation with Plücker relation

Here we show that there is a direct relation between the fundamental identity and Plücker

relation which characterizes the locus of the Grassmannian manifold. This bilinear relation

appeared in a variety of context in the physical literature, such as the exactly solvable

system (KP hierarchy etc.), free fermions on Riemann surface, topological string, matrix

model and so on.8 Although this relation itself is not new in mathematical literature (see

for example [15]), it might shed a new light in the study of the fundamental identity (2.4).

To see the relation, we rewrite the structure constant by the metric, by lowering the

upper index by the metric, fa1,··· ,ap+1 = fa1,··· ,ap

bhbap+1 , which gives the rank p + 1 anti-

symmetric tensor. It can be identified as the coefficients of the p+1 vector by writing them

with the wedge product of the orthonormal basis of n dimensional vector space e1, · · · , en,

|f〉 =
∑

a1,··· ,ap+1

fa1···ap+1ea1 ∧ · · · ∧ eap+1 . (A.1)

8Many of the works have the origin in the identification of Hirota’s bilinear identity of the KP hierarchy

with the Plücker relation. One of the original work is, E. Date, M. Jimbo, M. Kashiwara and T. Miwa, in

Proc. RIMS Symp. on Nonlinear Integrable Systems (Kyoto, 1981), eds. M. Jimbo and T. Miwa (World

Scientific, Singapore, 1983).
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Plücker relation is a condition on the coefficient fa1···ap+1 when the (p + 1) vector |f〉 is

written in the form,

|f〉 = v1 ∧ · · · ∧ vp+1 , va ∈ Rn . (A.2)

The requirement is given by a set of bilinear relations,

p+2
∑

k=1

(−1)kfa1,··· ,ap,bk
fb1,··· ,bk−1,bk+1,··· ,bp+2 = 0 (A.3)

where (a1, · · · , ap) and (b1, · · · , bp+2) is the arbitrary number in 1, · · · , n. The fundamental

identity is obtained from Plücker relation by putting a1 = b1 = a and take the sum over a.

Because of this procedure, the fundamental identity is a weaker condition than the Plücker

relation.

In particular, when

fa1,··· ,ap+1 =

{

ǫa1,··· ,ap+1 a1, · · · , ap+1 ∈ {1, · · · , p+ 1}
0 otherwise

(A.4)

the (p+ 1)-vector becomes |f〉 = e1 ∧ · · · ∧ ep+1. Therefore, it satisfies the Plücker relation

and the fundamental identity. We note that the direct sum of this p-algebra corresponds

to the p vector of the form e1 ∧ · · · ∧ ep+1 + ep+2 ∧ · · · ∧ e2p+2 + · · · which is definitely not

of the form (A.2). In this sense, the fundamental identity allows a broader set of solutions

than the Plücker relation.

In the application to the physics, it may be useful to rewrite these relations by free

fermions. To define them, we consider space of p-vectors, Hp, (p = 0, 1, · · · , n) where base

is spanned by exterior product of the basis, ei1 ∧ · · · ∧ eip , (i1 < · · · < ip). On this p-vector

space, we introduce “fermion” operators ψi, ψ̄i (i = 1, · · · , n) as

ψ̄a(ei1 ∧ · · · ∧ eip) = ea ∧ ei1 ∧ · · · ∧ eip , (A.5)

ψa(ei1 ∧ · · · ∧ eip) =

p
∑

k=1

(−1)k−1δaikei1 ∧ · · · ∧ eik−1
∧ eik+1

· · · ∧ eip . (A.6)

These operators satisfy standard anticommutation relations,

{

ψi, ψ̄j

}

= δij ,

{ψi, ψj} =
{

ψ̄i, ψ̄j

}

= 0 . (A.7)

The Plücker relation and the fundamental identity is then written in terms of the fermions as,

Plücker relation :

n
∑

i=1

ψi|f〉 ⊗ ψ̄i|f〉 = 0 , (A.8)

Fundamental identity :
n
∑

i,j=1

ψjψi|f〉 ⊗ ψjψ̄i|f〉 = 0 . (A.9)
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Ph. Gautheron, Some remarks concerning Nambu mechanics, Lett. Math. Phys. 37 (1996)

103;

D. Alekseevsky and P. Guha, On decomposability of Nambu-Poisson tensor, Acta

Mathematica Universitatis Comenianae 65 (1996) 1;
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