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ABSTRACT: Motivated by the recent proposal of an N = 8 supersymmetric action for
multiple M2-branes, we study the Lie 3-algebra in detail. In particular, we focus on the
fundamental identity and the relation with Nambu-Poisson bracket. Some new algebras not
known in the literature are found. Next we consider cubic matrix representations of Lie 3-
algebras. We show how to obtain higher dimensional representations by tensor products for
a generic 3-algebra. A criterion of reducibility is presented. We also discuss the application
of Lie 3-algebra to the membrane physics, including the Basu-Harvey equation and the
Bagger-Lambert model.
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1. Introduction

In the long history of the study of Nambu bracket [, the relation with the supermem-
brane or M-theory has been giving the main motivation (see [f]] for the references). There
have been many attempts to quantize the classical Nambu bracket toward this direction.
However, since the quantization is difficult and does not seem to be unique, we need to
understand which properties are essential from the physical viewpoint.

Recently Bagger and Lambert [J—fi] and Gustavsson [f] proposed a formalism of mul-
tiple M2-branes and it was found that the generalized Jacobi identity (or the fundamental
identity) for Lie 3-algebra is essential to define the action with N' = 8 supersymmetry. It
seems to give the desired principle of constructing quantum Nambu bracket which has been
long sought for. So far the only explicit example of Lie 3-algebra ever considered for the
Bagger-Lambert model is A4, the SO(4)-invariant algebra with 4 generators.! For a more
concrete understanding of the Bagger-Lambert model, it is urgent to study more explicit
examples of Lie 3-algebra. In the mathematical literature, the Lie 3-algebra (also known
as Filippov algebra) is not new [J], and its structure has been studied to some extent.
However, not only that the complete classification of the algebra does not exist, there are
very few explicit examples in the literature.

In this paper, we first endeavor to find new examples of Lie 3-algebra (section []). After
a survey of the mathematical literature, especially the study of Nambu-Poisson bracket,
interestingly, we successfully find several new examples (section ). All the new examples
have one important feature in common, namely that their metrics are not positive-definite.
In this respect they are very different from A4. We also tried to search for solutions of
the fundamental identity with positive-definite metrics by computer when the number of
generators are small (n = 5,6,7,8), and found that there are no algebras except for .44 and
its direct sum. We are led to make the conjecture that there are no other 3-algebras with
a positive definite metric. Generators of zero norm are almost ubiquitous in 3-algebras.

In section [, we consider the problem of realizing Lie 3-algebras using cubic matrices.
As an example, we consider cubic-matrix representations for A4, and try to develop a sys-
tematic method to generate higher dimensional representations. In the case of Lie algebra, a
simple method to derive higher dimensional representations is to use the tensor product and
then to decompose it into irreducible representations. Here we show that we can do similar
construction of higher dimensional representations by tensor product. One can define the
notion of irreducibility similarly, although we need to redefine the product of cubic matrices.

In section E, we review Basu-Harvey equation, and demonstrate that its success in
describing the configuration of multiple M2-branes ending on an M5-brane does not reply
on the specific realization of the 3-algebra as it was originally considered. We only need
the 3-algebra structure for the calculation. We also comment on its relation to the Bagger-
Lambert model. A few comments about future directions are made in section f.

In appendix A, we point out the relation between the fundamental identity and the
Pliicker relation. The latter appeared frequently in the literature of the exactly solvable
system, matrix model and topological strings.

1See also Kawamura’s work [ﬂ, E] where the same algebra and its representation was studied.



2. Lie n-algebra

2.1 Definitions

Lie n-algebra, also known as m-ary Lie algebra, or Filippov n-algebra [J, is a natural
generalization of Lie algebra. For a linear space V = {zapzl Va1 a;vq € C} of dimension D,
a Lie n-algebra structure is defined by a multilinear map called Nambu bracket [-,--- -] :
Y®n Y satisfying the following properties?

1. Skew-symmetry:

[Ao(1)7 T 7Ao(n)] = (_1)‘0‘[“417 T 7An] (21)
2. Fundamental identity:
[Alv T 7An—17 [Bb T 7BTLH = Z[Bly o0y B, [Ab o 7An—lyBk]7 Bk+17 T 7Bn]
k=1
(2.2)

The fundamental identity is also called the generalized Jacobi identity. It means that
the bracket [A,---, A,_1,"] acts as a derivative on V, and it may be used to represent a
symmetry transformation.

In terms of the basis, n-algebra is expressed in terms of the (generalized) structure
constants,

[Tau"' ’Tan] = Z'fay--aanb (2.3)
The fundamental identity implies a bilinear relation the structure constants,

7 forety Farap e = DD Fareay b Forecoty (2.4)
c i c

One may introduce the inner product in the space of algebra A as a bilinear map from
Y xVtoC

(T, Ty) = hap- (2.5)

We will refer to the symmetric tensor hg, as the metric in the following. As a generaliza-
tion of the Killing form in Lie algebra, we require that the metric is invariant under any
transformation generated by the bracket [Tg,,--- , T4, -]

<[Ta17 T ’TanfuTb]v TC> + <Tb7 [Tau te ’TanfwTCD =0. (2'6)
This implies a relation for the structure constant

hcdfal-nanflbd + hbdfal---anflcd =0. (27)

2In part of the literature [@], the fundamental identity (@) is replaced by a weaker (skew-symmetrized)
version, and thus the definition of Lie n-algebra is ambiguous. The definition we consider here is more closely
related to the physical applications we will consider below. See also [EI] for various aspects of the classical
and quantum Nambu bracket.



Therefore the tensor
fayan = fa1~~~an71bhban (2.8)

is totally antisymmetrized.

For applications to physics, it is very important to have a nontrivial metric hyp in order
to write down a Lagrangian or physical observables which are invariant under transforma-
tions defined by n-brackets.

Another mathematical structure of physical importance is Hermitian conjugation. A
natural definition of the Hermitian conjugate of an n-bracket is

Ay, -, Aglf = (AL, Al (2.9)

This relation determines the reality of structure constants. For the usual Lie algebra, if we
choose the generators to be Hermitian, the structure constants f,,¢ are real numbers, and
if the generators are anti-Hermitian, the structure constants are imaginary. This is not the
case for 3-brackets. The structure constants are always imaginary when the generators are
all Hermitian or all anti-Hermitian. In general, for n-brackets, the structure constants are
real if n = 0,1 (mod 4), and imaginary if n = 2,3 (mod 4) for Hermitian generators. The
structure constants are multiplied by a factor of +¢ when we replace Hermitian generators
by anti-Hermitian ones only for even n.

From now on we will focus on the case of n = 3. Explicitly, for 3-algebra the funda-
mental identity (R-9) is

[A1, A2, [B1, By, B3]] = [[A1, Az, Bi], By, Bs| + [B1, [A1, Ag, Bo|, Bs| + [Bi, Bs, [A1, Az, Bg]].
(2.10)
In terms of the structure constant, the fundamental identity is

Z fcdeifabij = Z (fabcifidej + fabdifciej + fabeifcdij) . (211)

)

One of the important questions is how to classify the solutions of the fundamental
identity (R.11)) (or more generally (.4)). The trivial solution is to put all structure con-
stants zero fabcd = 0. The simplest nontrivial solution which satisfy the fundamental
identity (R-11)) of 3-algebra starts from D = 4,

[TaaTbaTC] = t€apedLd, ((1, b> Cad = 1727374)7 (212)
and the metric is fixed by the requirement of invariance (2.7) to be
hab = Oab (213)

up to an overall constant factor. Compared with the formula in some literature, we have
an extra factor of ¢ on the right hand side of (B.13) due to our convention of the Nambu
bracket’s Hermiticity (2.9).

This algebra is invariant under SO(4), and will be denoted as A4. The structure
constant is given by the totally antisymmetrized epsilon tensor fabcd = 1 €qped- 1N general,
for any n, the fundamental identity (B.4) is solved by the epsilon tensor in D =n +1,

faran’ =i €aranhs (2.14)



with the metric (R.13).
From these algebras, one may obtain higher rank algebras by direct sum as usual. For
n = 3 case, the algebra Ay @ --- ® Ay (p-times) with D = 4p is written as,

[Téa)va(ﬁ)vTc(W)] = Z'Eabcdéocﬁ’y(STcgé)a (2'15)
(aab7cad:17273747 04757’77(5:1,“‘,]?),

where dq8y5 = 0ag0ary0as-

A nontrivial question is whether there exists any 3-algebra which can not be reduced
to the direct sums of the algebra A4, up to a direct sum with a trivial algebra. For n = 3,
one may directly solve the fundamental identity by computer for lower dimensions D. We
have examined the cases D = 5,6, 7,8 with the assumption that the metric hy is invertible
and can be set to d,, after the change of basis. In this case the structure constant fp.%
can be identified with totally anti-symmetric four tensor fgpcq.

For D = 5,6, one can solve directly the fundamental identity algebraically by computer.
For D = 7,8, we assume the coefficients fup.q are integer and |fupeq| < 3 and scanned all
possible combinations. After all, the solutions can always be reduced to A4 up to a direct
sum with a trivial algebra, or A4 @ A4 (D = 8) after a change of basis.® This observation
suggests that the Lie n-algebra for n > 2 is very limited.

Actually there is an interesting relation between the fundamental identity and the
Pliicker relation (for the Grassmaniann manifold), which will be explained in the appendix.
It automatically tells us that the epsilon tensor is the solution of the fundamental identity
for Lie n-algebra in general. At the same time, it also implies that to find other solutions
are very difficult.

While very little is known about explicit nontrivial examples of the n-algebra, its
correspondence with Nambu-Poisson brackets given in section R.9 is very helpful.

If the metric is not invertible, it becomes possible to construct Lie 3-algebra other than
the direct sum of Ay. We will construct some examples in section .

2.2 Review of Nambu-Poisson brackets

Let M  be a manifold of d dimensions, and C'(M,) its algebra of functions. A Nambu-
Poisson bracket is a multi-linear map from C(My)®3 to C(M,) that satisfies the following
conditions [[[):

1. Skew-symmetry:

{fcr(l)7 fo‘(2)7 fa’(3)} = (_1)|U|{f17 f27 f3} (217)

30ne of the failed examples is,

7
Z fabcdea/\eb/\ec/\ed:el ANex Nes Negs+ e Nex Nes Neg —e1 ANe3 Nes ANer
a,b,c,d=1
+e  NesNeg/Ner+exNesNegNer+exNegsNes Ner+esANesN\es N\ eg (2.16)

for D = 7. This is the Hodge dual of Ge-invariant 3-form. It was also mentioned in [B]



2. Leibniz rule:

{f1, fa,gh} = {f1, f2, 9} h + g{ f1, f2, h}. (2.18)

3. Fundamental identity:

{9, 0 A f1s far £33} = {{g, b, f1}, fo, f3} + {f1. {9, s fo}, f3} +{f1, f2, {9, P, f3}}-
(2.19)

The prototype of a Nambu-Poisson bracket is the Jacobian determinant for 3 variables
xi(1=1,2,3)
{f1, f2, f3} = €ij10i f10; f20k f3. (2.20)

where ¢, 7,k = 1,2,3. This is the classical Nambu bracket. More general Nambu-Poisson
bracket can be written in terms of the local coordinates as,

{fi,f2, f3} = Z Z(—1)0132'11'22'3(33)32'0(1)flaz'[,(z)fﬁia(g)f?,- (2.21)

11<ig<i3z 0o€S3

It is proved that one can always choose coordinates such that any Nambu-Poisson
bracket is locally just a Jacobian determinant [[[4]. Locally we can choose coordinates such
that
where i, 5,k = 1,2,3, and dxidxodxs defines a local expression of the volume form. As

a result, it is straightforward to check that the Nambu-Poisson bracket can be used to
generate volume-preserving diffeomorphisms on a function f

of ={g1,92, f} (2.23)

specified by two functions ¢g; and gs.

A Nambu-Poisson algebra is also an infinite dimensional Lie 3-algebra. For a 3-manifold
on which the Nambu-Poisson bracket is everywhere non-vanishing, it is natural to use the
volume form picked by the bracket to define an integral [ 0 and then the metric can be
defined by

(f,9) = /M fg. (2.24)

Symmetries of the algebra are then automatically preserved by the metric.

The notion of Nambu-Poisson brackets can be naturally generalized to brackets of
order n, as a map from C'(My)®" to C(My). The fundamental identity for Nambu-Poisson
brackets of order n is

{fi- ot fon gt =D fon gt A1 a1y Gk b Gkt 5 On ) (225)
k=1

Both the Leibniz rule and the fundamental identity indicate that it is natural to think of

{fi, s fom1s - 3 C(Myg) — C(My) (2.26)



as a derivative on functions.
Each Nambu-Poisson bracket of order n corresponds to a Nambu-Poisson tensor field
P through the relation

{fl7’” 7fn} = P(df17 7dfn)7 (227)
P= Y Pi(@)d A N0, . (2.28)
i1 <+ <ln

The theorem mentioned above can also be generalized to brackets of order n, which means
that any Nambu-Poisson tensor field P is decomposable, i.e., one can express P as

P=ViA-AV, (2.29)

for n-vector fields V;. For a review of Nambu-Poisson brackets see, e.g. [L3].

Let us now focus on the case n = 3. When all the coefficients of the Nambu-Poisson
tensor field are linear in , that is, F4,i5(z) = >, firinis’xj for constant f; ;,:,7, we call
the bracket a linear Nambu-Poisson bracket, and it takes the form of a Lie 3-algebra on
the coordinates

{zisxj, o} = Zfijklﬂ?l- (2.30)
1

Apparently, a linear Nambu-Poisson bracket is also a Lie 3-algebra when we restrict our-
selves to linear functions of the coordinates x;. We have to be careful, however, in that the
reverse is not true, as they also have some differences. For the Nambu-Poisson bracket, one
may change the coordinates by a general coordinate transformation. On the other hand,
for Lie 3-algebra, we only allow linear transformations of the basis. Since the requirement
of Leibniz rule for the Nambu-Poisson bracket is not imposed on a Lie 3-algebra, we ex-
pect that only a small fraction of Lie 3-algebras are also linear Nambu-Poisson algebras.
In particular, we do not expect that the Nambu bracket of a generic Lie 3-algebra be
decomposable.

It has been shown that any linear Nambu-Poisson tensor of order n on a linear space
V can be put in one of the following forms by choosing a suitable basis of V; [L]:

1. Type IL:

r+1
P = Z r;00 N NOj_1 NOjp1 N+ NOpg1 (2.31)
=1

S
+ Z 2101 A AN Opgj A Oryjra Ao AN Oy,
j=1

where —1 <r <n, 0 <s<min(d —n —1,n —r). Explicitly, we have

ty;, 1<j<ril,
{.Z'l,”' sy Lj—1,Tj," " 7‘TTL+1} = j:xj—T’+37 r+2 S] §T+S+17 (232)
0, r+s+2<j<d.



2. Type II:

d
P=0W AN NOp_1 A Z aijxi(‘)j . (233)
i,J=n
In other words,
d
{Ilfl,-.- 7$n—17xj}zzaij$ia ]:n, ,d' (234)
i=n

Here the choice of coordinates is made such that the Nambu-Poisson tensor field is
linear, instead of trying to make its decomposability manifest. When we interpret these
brackets as Nambu brackets on the linear space generated by {z;}, we are no longer allowed
to make general coordinate transformations on the generators x;, and the decomposability
of the Nambu-Poisson tensor field is no longer relevant.

3. Examples of Lie 3-algebra

We already know a few examples of Lie 3-algebra which satisfies the fundamental identity.
e A trivial algebra is one for which the Nambu bracket is always 0.
e The 4-generator algebra with SO(4) symmetry Ay.
e Direct sums of an arbitrary number of copies of A4 and a trivial algebra.

e All Nambu-Poisson brackets on C(M, ) are of course also Nambu brackets on the
infinite dimensional linear space C'(My).

In the following, we list a few more examples of Lie 3-algebra. In contrast with previous
studies on this problem, we put relatively more emphasis on the metric, which is crucial
for writing down an invariant observable or Lagrangian.? Besides A4, the only well known
example of 3-algebra is the class constructed in [[J]. However, as we will show below in
section B.3, the invariant metric is almost trivial in those cases.

3.1 Linear Nambu-Poisson bracket: type I

First, since any linear Nambu-Poisson bracket is also a Lie 3-algebra, the classification of
the last subsection gives type I and type Il algebras.

A type I linear Nambu-Poisson bracket P, ) (B:31), (B:33) is labeled by a pair of
integers (r,s). P30y in (B.31) with plus signs for n = 3 gives A4 algebra. For other values
of (r,5), P gives a new algebra.

For example, P(_; 4) defines an algebra with 8 generators (apart from direct sum with
a trivial algebra)

[T27 T37 T4] — :l:T57 [T17 T37 T4] = iTﬁ? [Th T27 T4] = iT?v [T17 T27 T3] = :l:T8 (31)

‘However, @] suggests that we study the Bagger-Lambert model only at the level of equations of motion,
which can be described without a metric.



Without loss of generality, we can take all plus signs above, and an invariant metric is
given by
his = —hge = hgr = —hug = K (3:2)

for some constant K. The metric is thus non-degenerate with the signature (+ + + + — —

—-).
Another example is F; 1y, which is defined by

1, T3,T4] = =T, [T1,15,T4] = €Tn, [11,15,T4] =T5, [Th,T>,T3] =T, (3.3)

where we have fixed the signs except € = £1 by convention. The invariant metric is given
by
hll = 6h22 = h35 = —h46 = 1, (34)

while other components of h vanish.

3.2 Linear Nambu-Poisson bracket: type II

The linear Nambu-Poisson algebra of type I (£.33), (2.34) for arbitrary constant matrix
a;; has the Nambu bracket

T17T27 Zam ]_37 7d) (35)

The invariance of the metric implies that

d
hil = hig = Z hjiaik =0 (3.6)

fori,5,k =3,--- ,d. Thus a = 0 if h is invertible. Conversely, if a is invertible then h;; = 0
for i,j5 = 3,---,d. As Ty and T, do not appear on the right hand side of the Nambu
bracket, there is no constraint on hy1, h1s or hos.

As Nambu-Poisson brackets, we can extend the 3-algebra on the space of linear func-
tions V = {Z?Zl a;T;} to all polynomials of T;’s. The product of T};’s defines a commutative
algebra.

3.3 One-generator extension of a Lie algebra

In addition, we may construct other examples. For a given Lie algebra G with generators Ty,
and structure constants f,;¢, we can introduce a new element 7Ty and define a Lie 3-algebra

by [BQ]

[T07 Taa Tb] = fabcTC7 (37)
[TaaTlh ] - 0
for a,b,c =1,--- ,dim G. For a simple Lie algebra G, the invariance of the metric demands
that
([T07 Ta: Tb]7 Tc> + (Tba [T07 Ta7 Tc]> =0 = fabdhdc + facdhdb =0. (39)



This suggests that hg, should be proportional to the Killing form of G. However, the
invariance conditions also include

([To, Ty, Te), To) + (Te, [Tu, Ty, To]) = 0 = fup®hge = 0,
<[Ta7Tb7T0]7T0> + <T07 [TayTvaOD =0= hCO = 0. (310)

Therefore, we can not use the Killing form of the Lie algebra G as hg,, but instead the
metric should be taken as

hab = h()a = 0, hoo = K, a, b= 1, ce ,dim g, (3.11)

where K is an arbitrary constant.

If the Lie algebra G can be realized as a matrix algebra, this 3-algebra can also be
extended to polynomials of 7,’s. (That is, we extend the Lie algebra G to its universal
enveloping algebra.) We can define the Nambu bracket by

[Ty, A,B] = [A,B] = AB — BA,  [A,B,C] =0, (3.12)

where A, B,C are elements of the matrix algebra. The Leibniz rule follows from this
definition®
[Ty, A, BC| = [Ty, A, B]C + B[Ty, A, C]. (3.13)

However, it is not possible for the Leibniz rule to apply to products involving Tj.
This 3-algebra has a close connection with the Nambu bracket defined in [[19]. For a
matrix algebra, the Nambu bracket in [[19] is defined as

[A, B,C] = tr(A)[B, C] + tr(B)[C, A] + tx(C)[A, B. (3.14)

This Nambu bracket is automatically skew-symmetric and satisfies the fundamental iden-
tity. For a matrix algebra, we can choose the basis of generators such that there is only
one generator, the identity I, that has a non-vanishing trace. Denoting Ty = I/tr(I), and
the rest of the generators as T, (a # 0), the Nambu bracket is precisely given by (B.7)
and (B.§). Thus we see that the Nambu bracket of [[[J] is equivalent to the 3-algebra in
this subsection for the case when G is a matrix algebra of traceless matrices.

3.4 A truncation of Nambu-Poisson structure on S°

The classical Nambu bracket

{f1, f2, f3} = @i €ijp1 05 f1 Ok f2 OLf3 (3.15)

defines a Nambu-Poisson bracket with SO(4) symmetry on the space of all polynomials of
{z;:i=1,---,4} to all order. Based on this we define a Nambu bracket which is restricted
to polynomials of order no larger than N as

{Xir“iwXj1~~~jm7Xk1"'kn}7 l+m+n—2 < N,

1
0, l+m+n—2>N, (3.16)

[ Xy vy Xy s Xbyoookin] = {

5Note that here the ordering of the product on the right hand side is important, unlike the case of a
Nambu-Poisson algebra.

— 10 —



where the generators X are monomials of order [ < N
Xil“'iz = Tjy = Tgy- (317)

The case with N = 1 is precisely A4. As N — oo, this algebra approaches to a classical
Nambu-Poisson structure on C(R?).

As the Nambu-Poisson algebra (B.19) is known to observe the fundamental identity, we
only need to check that the truncation rule is compatible with it. Note that each term in
the fundamental identity is of the form [Ay, Ag, [A3, Ay, A5]]. Let each A; to be a monomial
of order a;. Then this term is truncated to zero if a3+ a4+ a5 —2 > N so that [As, Ay, As)
is truncated to zero, or if a; +- - - +a5 —4 > N so that the outer bracket vanishes. However,
since a monomial is at least of order 1, we always have

a1 +as+az+ag+as—4>a3+aq+as— 2, (3.18)

and hence the necessary and sufficient condition for truncation for every term in the fun-

damental identity is the same
5

> ai—4>N. (3.19)
i=1
Thus the fundamental identity is preserved by the truncation rule.
We can also try to define multiplication by truncating the products of monomials as

Xiyigipoims L+m <N
Xi1'~'iz ’ le"'jm = {0721 B l+m> N. (320)
Again, one can check that the Leibniz rule, which is known to hold for the case N = oo, is
compatible with the truncation of products at finite N. Indeed, every term in the Leibniz
rule condition

[A1, Az, A3Ay] = [A1, Ao, A3] Ay + [A1, Ag, Ay As (3.21)

is truncated if and only if
a1+ as+az+ag —2> N. (3.22)

To define the metric, it is natural to use the integration over the underlying manifold.
Decomposing the integration over the space of x; into the radial part and the integration
over S3, we define the metric as

(Ar, Ag) = / 0 / drp(r) Ay - As, (3.23)
S3 0

where we introduced a distribution p(r) so that the integrals converge for polynomials of
x;. If we are considering the Nambu structure on a truncated set of functions on S® of
radius R, we should take p(r) = §(r — R).

STf one of the entries is of order 0 (that is, it is a constant), the Nambu bracket vanishes identically.

— 11 —



Roughly speaking, treating z; as coordinates on S® is equivalent to imposing the con-
straint

Z ? =1 (3.24)
on the algebra of polynomials of z;’s. Since ), :1722 is a central element in the 3-algebra, i.e.

D af, Xiy iy Xjyooji) = 0, (3.25)

this constraint is consistent with the Nambu structure. However, the constraint is not
compatible with the truncation rule for the Nambu bracket (B.16) or the product (B.2().
Thus we should not impose the constraint except when we compute the metric. The metric
of (A, B) should be computed by first multiplying A - B with the truncation (B.2(), and
then treating the product as a classical function on S® and integrate.

It is easy to see the the metric defined this way is not positive definite. Consider the
norm of A = z; — ax}", where m is an odd number between N/2 41 and N — 1. Its norm
is

(A, A) = /SJ z? —2a/sg it (3.26)

where the term (z{", ") is absent because z]" - z{* = 0 according to (B.20). While both
terms on the right hand side are non-zero, one can choose a to be sufficiently large so that
the norm is negative.

3.5 An Extension of Ay
An algebra with 4(N + 1) generators {Ti(a) :a=0,---,N,i=1,--- 4} can be defined by

T(a+b+c)
l

(3.27)

@, 7® 7] = § ik ,a+b+c<N,
’ Tk 07 a+b+c>N.

To check that the Nambu bracket (B.27) preserves the fundamental identity, we only
need to check that the truncation rule is compatible with the fundamental identity, since
this bracket is essentially just a grading of direct sums of A4. For a term in the fundamental
identity

1 (1 T, 7)), (3.28)

we note that it is truncated if ¢ + d + e > Ny (so that the inner bracket is zero), or if
a+b+c+d+e> N (so that the outer bracket is zero). However, since a,b > 0, we always
have a +b+c+d+e > c+d+ e, and thus the necessary and sufficient condition for this
term to be truncated to zero is just a4+ b+ c+d+e > N. Since this condition is the same
for all terms in the fundamental identity, the fundamental identity is preserved.

One can further extend the 3-algebra form the linear space spanned by Ti(a)’s to poly-
nomials of the generators truncated at order N. Let

(3.29)

(0) ()
TOT® _ ;7T a+b< N,
J 0, a+b>N.
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) T-(ak) .

23

Zle ar < N}. The Nambu bracket on this space can be defined by imposing the Leibniz

The space of polynomials of Ti(a ’s is thus spanned by the monomials {Ti(lal) ‘e

rule
[A(“),B(b),C’(C)D(d)] — [A(“),B(b),C’(C)]D(d) + [A(“),B(b),D(d)]C’(C), (3.30)

where A is a monomial Ti(lal) e Tl(kak) of level Zle a, = a, etc. Note that the truncation
rule of every term above is that each term vanishes if and only if a +b+c¢+d > N.
For a given function f(a) with the property

f(a)=0 for a> N, (3.31)
the invariant metric can be defined as
(T, 7V) = fla+b)dy;  for a,b=0,--- N, i,j=1,--- 4 (3.32)
Apparently all generators of level a > N/2 are null.

3.6 Truncation of a Nambu-Poisson algebra

While Nambu-Poisson algebras are always Lie 3-algebras of infinite dimensions, it is some-
times possible to truncate the Nambu-Poisson algebra to a finite dimensional Lie 3-algebra.
We have seen such an example in section B.4. In fact, the same can be done for all linear
Nambu-Poisson algebras. Starting with a linear Nambu-Poisson algebra, one can impose a
truncation over monomials of the coordinates of order larger than N. The reason why this
is a consistent truncation for the Nambu bracket is essentially the same as the arguments
in section B.4.

3.7 Level extension of a 3-algebra

In the above we have seen that the notion of an additive level can be introduced to extend
a given 3-algebra to a larger algebra. More precisely, given a 3-algebra

with an invariant metric h;;, we can define a new 3-algebra for generators Ti(a) (a =
Ny, -+, Ny with Ny > 0)
1 T 1) = fip T, (3.34)

? J

When N; = 0 the original 3-algebra is embedded at level 0.
A nontrivial choice of the metric is

a b
(1, 7") = f(a+b)hy, (3.35)
for an arbitrary function f(a) such that

f(a)=0 for a> Nj+ Ns. (3.36)
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To check that this is invariant, we note that

(', 70 1), 1) T (T TP 1Y) = (Fist™ Bt Fit™ ) fa+ b+ -+ d) = 0,

(3.37)
whenever there is no truncation in both terms. When there is a truncation, we either have
a+b+c>Nyora+b+d> Ny This implies that a + b+ ¢+ d > Ny + Ny, and the
equality above still holds because f(a+b+c+d) =0.

This is not the most general solution for the invariant metric. While generators Ti(a) at
level a < 3N7 can never appear on the right hand side of a Nambu bracket, it is impossible
to write down any constraint for the metric components <Ti(a) , Tj(b)> with a,b < 3N7. Those
components are thus arbitrary.

3.8 A conjecture

The reason why examples of 3-algebra are so rare can be intuitively understood by not-
ing the resemblance between the fundamental identity and the Pliicker relation when a
positive-definite metric is assumed. In the appendix we give a more detailed analysis of the
fundamental identity with an effort to make its connection to the Pliicker relation more
manifest. We hope this will help us understand the fundamental identity better in the
future.

In [P]]) it was conjectured that an n-algebra is always a direct product of n-algebras
of dimension n and (n + 1) and some trivial algebras. This conjecture is ruled out by
some of the examples listed above. On the other hand, except A4 and the trivial algebra
(and their direct products), none of the examples we have so far has a metric which is
positive definite. All of them have generators of zero-norm. Hence we conjecture that all
finite dimensional 3-algebras with positive-definite metrics are direct products of A4 with
trivial algebras. In other words, except direct products of A4 with trivial algebras, all finite
dimensional 3-algebras have generators of zero-norm.

A weaker form of the conjecture has already been studied in [RJ]. There it was shown
that nontrivial finite-dimensional generalization of A4, which is associated to the Lie algebra
SO(4) ~ SU(2) x SU(2), to other semi-simple Lie algebras is essentially impossible.

For an algebra with a positive-definite metric, we can always choose a new basis of
generators such that the metric is the identity matrix d,,. It follows from the invariance of
the metric

([Ta, Ty, Te], Ta) + (Te, [Ta, Ty, T4)) = 0 (3.38)

that
fabcd = _fabdc (fabcd = fabcehed)- (339)

Since the structure constants are by definition skew-symmetric with respect to the first 3
indices, in this case the 3-algebra structure constants are totally-antisymmetrized.

Assuming that the structure constants are totally-antisymmetrized, we checked using
computers that all 3-algebras with no more than 8 generators are either trivial or are a
direct product of the 4-generator algebra 44 with a trivial algebra.
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The almost unavoidable appearance of the zero-norm (or null) generators is very in-
teresting from the viewpoint of physical applications. For a dynamical variable X living in
the space of a 3-algebra with generators {74},

X = X4Ta, (3.40)

its canonical kinetic term

(0uX,0,X) (3.41)

there is no quadratic term for X 4 if T4 is a null generator. Hence the degrees of freedom
associated with the zero-norm generators are not dynamical. They can be integrated
out and their equations of motion are constraints. Therefore, each zero-norm generator
corresponds to a gauge symmetry. Similarly, a negative norm generator corresponds to a
ghost.

Infinite dimensional algebras with positive definite metrics are easy to construct. As
we mentioned in section P.9, for any Nambu-Poisson structure on the algebra C(Ms) of
functions on a 3-dimensional space M3, the Nambu-Poisson tensor field defines a volume
form on M3, which can be used to define an integral and then a metric. Whenever the
volume form is everywhere non-vanishing, this metric is positive definite.

4. Representations of Nambu bracket by cubic matrix

4.1 Motivation

We would like to study representations of the Lie 3-algebra in this section. The first
question is whether it is possible to represent the generators as matrices, which form an
associative algebra. A natural definition of the quantum Nambu bracket is [fl, [[3]

[A,B,C] = ABC — ACB + BCA — BAC + CAB — CBA (4.1)

for an associative algebra with elements A, B, C. For the algebra A4, there are represen-
tations of arbitrary dimension N > 2 based on the N x N irreducible representation
of su(2). Let J* (i = 1,2,3) be the N = 25 + 1 dimensional irreducible representation of

su(2), then

R = ol B = GG+ 1)), (4.2

where ¢ = 1,2,3 and [ is the unit matrix, is a representation of Ay.

A problem with this representation is that the eigenvalues of R(T*) are fully degener-
ate. Interpreting R(T") as some sort of quantum coordinates of R*, the geometric picture
of this algebra is a fuzzy 2-sphere embedded in R?*, with its 4-th coordinate fixed by

wt = (j(j + 1)) (4.3)

On the other hand, in the physical applications we have in mind, one would like to interpret
Ay as a fuzzy 3-sphere.
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Formally, A4 is a generalization of su(2). While the adjoint representation of su(2) is
(Ji)jk = €ijts (4.4)

one is tempted to conjecture that for A, we have a representation of the form
R(T") jkt ~ €ijua- (4.5)

This is not exactly correct but we do have a representation of a similar form, which will
be given below in (f.14). The point here is that although our lives would be much easier if
we could just use matrices to represent Lie 3-algebras, but for the example of Ay, it seems
more appropriate to use objects with 3 indices.

There is also some physical motivation suggesting the use of cubic matrices. A long-
standing puzzle about the low energy theory of coincident Mb5-branes is the following. In
analogy with the case of D-branes, we imagine that cylindrical open membranes stretched
between 2 M5-branes account for the low energy fields on M5-branes, and thus the low
energy effective theory of N M5-branes is expected to be a non-Abelian gauge theory with
N? degrees of freedom. On the other hand, anomaly and entropy computations suggest that
the M5-brane world-volume theory has N3 degrees of freedom [RF]. Recently, arguments
were presented based on considerations of membrane scattering amplitudes in the large C
limit, suggesting that the dominating configuration of membranes connecting M5-branes
is not a cylindrical M2-brane stretched between 2 M5-branes, but rather a triangular M2-
brane stretched among 3 M5-branes [BJ]. The low energy fields on M5-branes should
hence appear as objects with 3 indices. As a supporting evidence, BPS configurations of
membranes stretched among 3 Mb-branes were found in [Rf]. Therefore it is natural to
introduce cubic matrices X(iﬁw 1=1,2,3,4and o, 8,7 =1,..., N, to represent the spatial

coordinates of open membranes with boundaries divided into 3 sections belonging to 3
Mb5-branes (af7y).

4.2 Realization by cubic matrices

Cubic matrices were introduced in [[], f]. A cubic matrix is an object with 3 cyclic indices
Aijk = Ajri = Agij- (4.6)

A triplet product of cubic matrices is defined as

(A, B, C)ijr, = Z Auij BikiClji.- (4.7)
!

While Einstein’s summation convention sums over indices repeated twice, we will only sum
over indices repeated thrice.” The Hermitian conjugation is defined by

A;[jk = Akjis (4.8)

"Because of this property, this triplet product is not invariant under the rotation (or the unitary trans-
formation) of the indices. It motivates us to introduce a generalized product in section E
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and the inner product of two cubic matrices by

(AIB) = 3 A% B (19)
ijk
Note that we used slightly different notations for the inner product for cubic matrices (-|-)
and the inner product for 3-algebra (-, ).

The cubic matrix algebra has some interesting properties. For example, it can be
used to give a formulation of the generalized uncertainty relation for 3 observables [{.
The algebra of cubic matrix also naturally arises when we consider the scattering of open
membranes in a large C field background [R3].

The Nambu bracket is defined for cubic matrices as
[A,B,C] = (A,B,C)+ (B,C,A)+ (C,A,B) — (C,B,A) — (B,A,C) — (A,C,B). (4.10)
4.3 Representations for A,

The algebra A, (B.12) has been studied in the context of cubic matrices as the “generalized
g

spin algebra” [§].
A 4 x 4 x 4 representation of the algebra (2.13) is

R(T?)H = e for iR AL (4.11)
0, otherwise.
Q. is anti-symmetric Q%) = —Q} ;;, and cyclic Q% = Q};;. They satisfy
. . -
Sk~ Qi + inj - Qéjk = ikl (4.12)

The sign of each term corresponds to the orientation of a face of a tetrahedron. One way
to assign values to ’s is

Qi = geijkl. (4.13)
In this case ({.11)) can be expressed as
ROTYH = el 07 (.14
Obviously R(T;)’s are all Hermitian.
This representation R has
> R(T®) i R(T* )i = 31635, (4.15)

klm

which can be viewed as the analogue of the condition
4
> oXP =17 (4.16)
i=1

that defines a 3-sphere of radius r in R%. Therefore it is natural to associate A4 to the
notion of a fuzzy 3-sphere. Note that this algebra is different from the definition of fuzzy

3-sphere in [4].
Representations of arbitrary dimension N > 4 can be found in [§.
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4.4 Construction of higher representations

Here we would like to discuss a question about cubic matrix representations for a generic Lie
3-algebras, that is, how to construct new representations from given representations. Like
the representation by matrices, it is possible to construct higher dimensional representations
by the direct sum and the direct product for the representation by cubic matrices.

Suppose R;(T%) (i = 1,2) is an N; dimensional cubic matrix which satisfies a given
3-algebra (not necessarily A4). There are several systematic ways to construct new cubic
matrix representations of the same 3-algebras from R;:

1. Direct sum representation Ry @ Ry (N7 + Ny dim):

(B1 @ Ro(T))iju

Rl(Ta)ijk lf’L,],k‘G{l, 7N1}7
=9 Ro(T")inyj—nNyk—ny i i,k € {N1+1,--- Ny + No}, (4.17)
0 otherwise.

2. Direct product representations R; ® Ro which has dimension N Na:
(R @ Ro)1yrx = (R1(T?))ijudi jrir %+ 0iji(R2(T))ir o Oiji = 04j0ir, . (4.18)

Here I,J, K is the combination of two indices such as I = (i,i'), J = (j,7'), K =
(k,k"). i,j,k arein 1,--- /Ny and ¢/, ', k" arein 1,--- , No. We can take both sign in
the second term since —Ry (1) is also the representation of the 3-algebra.

3. Tensor product R(T*) ® Z with constant cubic matrix Z which satisfies
(2,2,2)=Z. (4.19)

If the size of Z is n X n x n, the dimension of the representation is n/N. There are
many choices of Z. Somewhat systematic construction of Z is given later.

By taking the direct product of the fundamental representation of A4, one can obtain
4" dimensional representations systematically.

In the representation theory of matrices, one may use the unitary transformation by
which the representation matrix becomes block diagonal form. This notion, however,
does not have straightforward generalization to the cubic matrices.

Construction of cubic projector Z. Straightforward solutions of ({.19) are the diag-
onal cubic matrices,

Zijk = ziéijk, Z; = il,O . (420)

For less trivial solutions, we observe that eq. (.19) resembles the projector equation.
It motivates us seek solutions of the form,

Zz’jk = VU Vg (4.21)
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where v; is an vector in n dim space.
By requiring eq. (f.19), we obtain,

(2,2, 2)ijk = <ZI:U ) (4.22)

So if

~1/3
v; = <va’> vi, (4.23)

l

(E:21) gives a solution to (f:19). The general solution to this is

v; = cej, €j = £1,0, (4.24)

~1/6
. (Z ) | (4.25

i

This construction can be generalized by using (< n) vectors vi(a) (o =1,---,r), where
each v(® takes the form ({24) and the cubic orthogonality relation,
Z v(a : ) dafry- (4.26)
Then,
Zijk = Z Zl(ﬁw
2 = vga)v§ Dy (4.27)
@ ifa=p8=
(2@, 2 z0) = 2 ifa=0=y (4.28)
0 otherwize

satisfies (f.1I9). One might refer to such Z as rank r cubic projector.

We note that this construction does not give all the cubic projectors. Even for the
2 X 2 x 2 case, a direct algebraic computation by computer shows that there are extra
solutions which do not take this form

4.5 Comments on irreducibility

As mentioned earlier, the non-invariance of the triplet product ({.7) under the rotation
of the indices forces us to introduce a generalization of the product by using a symmetric
cubic matrix K, (Ki, )i, in@ = Kivisis)s

(A, B,C)ijr = Z Knmi Anir j Bkrion Cpjogr Kiininn Ko i Ky (4.29)

i G1 Sl Ll
n7m7l7l 7Z 7] 7] 7k 7k

where the indices i, j, k,n run from 1 to N. Usually we take K;;, = d;j,. We note that there
is no orthogonal transformation which keeps d;;;, invariant. In the general form above, the

— 19 —



summations are taken only for doubly repeated indices, so the notion of the orthogonal
transformation remains the same.

Suppose we consider a triplet product algebra such as [J¢, Jb, J¢] = ieq p e a9, (JO =
R(T%)) and try to find “irreducible decomposition”. We introduce the orthogonal projec-
tors p;; and g;; which satisfy

=p, ¢¢=4q p=p ¢ =4q pg=0, ptqg=1. (4.30)

We note that such projector may be written as,

Ido t 0 0 t
= . g= ., g€ O(N,R 4.31
p g<00>g q 9<01N_d>g g€ 0( ) (4.31)

One may define the algebra be reducible if there exists a pair p, ¢ as above and they
satisfy

Z(Ja)ijkpii’%j’ = Z(Ja)ijkpjj’Qkk’ = Z(Ja)ijkpkk’(h'i’ =0, (4.32)

tj Jk ]
Z(’C)ijkpii’%j’ = Z(]C)ijkpjj’Qkk’ = Z(]C)ijkpkk’%‘i’ =0. (4-33)
ij ik ki

If these identities are satisfied, we have a d dimensional representation by redefining the
generators and the cubic product at the same time as

J— (ja)ijk = Z (J)irijokr PiriDj 5Pk s (4.34)
i/j/k/

K— (lé)ijk = Z (K)irigr DiripjrjPrrk- (4.35)
i/j/k/

An example of reducible representation For a given representation J%, the repre-
sentation J* = J* ® Z, where Z is written as ({.21), gives an example of the reducible
representation. The projectors are,

VU7 VU7

pr; = 51'9'2—]2 Q1 = 0 (1 - — ]2) : (4.36)
|v] Vv

In this sense, the tensor product with the cubic projector gives a good example of the

reducible representation in our sense. We note, however, that the cubic matrices K which

defines the cubic product is not given by the original definition d;;, because of eq. ({.35).

Failed example: (anti-)symmetrization In case of the Lie algebra, the tensor product
of two fundamental representations are reducible. Reduction to the irreducible representa-
tion can be obtained by using (anti-)symmetrization of indices. In the following, We will
argue that this will not be so simple for the cubic case.

We consider a direct product representation of two fundamental representations,

ik = Jiplugn + Jogdijk (4.37)
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and K1k = 0ijk0;5- Here we use the multi-indices I, J, K to represent 4,7 and so on.
We define the projections to the symmetric and anti-symmetric part as

1 1
prj = 5 (03037 + 0i5075) s qrg = 5 (04077 — 0i5075) - (4.38)

It is easy to see that p, q satisfy the constraint (f.30). On the other hand, conditions ([£.39)-
(B.33) become

1
> Jfkprgiv = 2 (i Omk — inOimk + TStk — T Otmie
17
+5lmk']lgﬁ7,E - 5lkal%nE + 5ka li?l];: - 5[777,/4: la;n];;) (439)
1
> SrikpiLgin = 5 (Gtmk Otk — OtmkOmk + Ok Otmi — Ok Oimi) (4.40)
17

They do not vanish. It implies that the (anti-)symmetrization which works in the con-
struction of the representation of Lie algebra does not work for cubic matrices.

5. Application to multiple M2-branes

5.1 Basu-Harvey equation

Generalizing Nahm’s equation, which was used to describe the analogous configuration of
D1-branes ending on D3-branes, the Basu-Harvey equation was proposed [27] to describe
multiple M2-branes ending on an Mb-brane

ax? K ik

s i yk yl] —
g X XF X = 0, (5.1)

where X'(s)’s represent spatial fluctuations of the M2-branes, and s is a worldvolume
coordinate. This equation admits a funnel solution:

Xi(s) = f(s)R(T), (5.2)
£s) = == (5.3)

where T satisfies the SO(4)-invariant algebra A4
(70,79, T = i ™MT (g k1 =1,2,3,4,) (5:4)

and R(T") is any representation of this algebra.

As we will see below, the Basu-Harvey equation can be interpreted as a BPS condition
for the multiple M2-brane action of Bagger and Lambert [E}, although it was first proposed
without an underlying Lagrangian. On the other hand, this particular solution happens to
define a Lie 3-algebra structure. It is possible to proceed for our present purpose without
assuming a particular M2-brane action.
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In order to give a proper geometrical interpretation to this solution, we also need to
assume that the algebra (F.4) of T describes a fuzzy three-sphere with radius r given by

r? = 2:(X")2 x f2(s) o % (5.5)

i

Hence
2 _ @
Ks

for some constant «. The T%’s then represent the Cartesian coordinates of the fuzzy 3-

r (5.6)

sphere. Furthremore, infinitesimal SO(4) rotations are generated by

and the invariant metric is

(T, T7) = §Y. (5.8)
The energy proposed in [27] is

i 2

dxt K .. .

—— iy IR XT Xk XY
S :

i 291/2
o dX .
+<1+i%e”kl<—ds ‘[X],Xk,Xl]>> } ,

where |A|> = (A]A). We will specify the two constant parameters a and C below.

For X? = 0 (or more generally when % = 0 = [X7,XF*, X!]), the energy is that of
N D2-branes at rest: £ = ToN times the M2-brane volume. The form of the energy F is
such that the Basu-Harvey equation (b.1)) is a BPS condition. One should choose a as

E = T2N/d2a[a2 (5.9)

a2 == (5.10)

so that the cross-term proportional to (ddisi][Xj,X # X') cancels in (B.9), otherwise the
theory is not covariant.
For the funnel solution (f.4) and (f.3), the energy is

C /dX'dX' C . .
_ 2 ~ — i 1
E_T2N/d oll+ K< — |~ >' T2NL/ds+T2NL/ds8K2S3<R(G)|R(G .
(5.11)
According to (B.6),
®ds 2K?% [ 3
and thus
E/L = TgN/ds + 5/dr 3, (5.13)
where . .
B = 2T2N—<R(G8)(L§(G e, (5.14)
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We should choose C such that
B = 2m*Ts, (5.15)

where T5 is the Mb5-brane tension.
The derivation above goes through without the need of a representation for the bracket
in (5.1). While the constant C' can be tuned to give the correct answer, the needed 73
dependence of the 2nd term in F is also guaranteed by the relation ([5.6)
9 1

- 1
r ocs, (5.16)

which is a direct result of the fact that the two terms in the Basu-Harvey equation differ
in the order of X by 2.

After choosing C properly to get the correct expression of energy for the M2-M5 system,
K is still a free parameter. But we can always scale X so that K = 1.

In the original work of Basu and Harvey [27], they considered the fuzzy 3-sphere defined
in 4]. What we have shown above is that actually the success of Basu-Harvey equation
does not rely on a particular choice of how the fuzzy 3-sphere algebra (p.4) is realized. All
we need are the general properties of the Lie 3-algebra.

5.2 Multiple M2-brane action
Bagger and Lambert [B-J] proposed a supersymmetric Lagrangian for M2-branes for a

given 3-algebra as

. - .
= —§(D“XI,DHXI> 4 %@,rﬂpuxm + %@,FU[XI,XJ, O)) — V(X) + Los, (5.17)

where D), is the covariant derivative, V' (X) is the potential term defined by

V) = I X XK X X, XK, (5.18)
and the Chern-Simons action for the gauge potential is
Los = %EW’\ <fadeA;mbauA)\cd + ngdagfefgbA,uabAuch)\ef> : (5.19)
The SUSY transformation is defined by
oX! = jerly,, (5.20)
6, = D, XTrT!e — éxg XJ XK poed PITE ¢ (5.21)
6A,b, = iel, DX W fet,. (5.22)

While the fundamental identity is needed for the gauge symmetry of the multiple
M2-brane theory, the invariant metric is also necessary to write down the gauge-invariant
Lagrangian.

For the background with ¥ = A = 0, a BPS condition should guarantee that

1
(aqurﬂrf - E[XI,XJ,XK]F”K> e=0 (5.23)
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for some constant spinor €. Assuming that 0; = d, = 0, for the constant spinor satisfying
1

14+ T ) e = 0 5.24

(145 =0, (5.21)

the BPS condition is guaranteed if

i
% + igeijkl[Xj, Xk xY=o, (5.25)
where the superscript s on I'* denotes the direction in which X*® is identified with the
M2-brane worldvolume coordinate s, and I'?3* = I''I'?I®I'", and we also assumed that
X! =0 except for I = 1,2,3,4. We see that the Basu-Harvey equation is indeed a BPS
condition for this theory if K = +1 (this can always be achieved by scaling X).
For a solution of the Basu-Harvey equation, the Hamiltonian density of the Bagger-
Lambert model is simply

H = (0,XT, 0,x1). (5.26)

This coincides with the Hamiltonian proposed in [B7] up to a constant shift and overall
factor.

Although the the connection between the Basu-Harvey equation and the Bagger-
Lambert model begins to be clarified we have an impression that there still remain some
mysteries which should be clarified in the future. Incidentally, apart from the Basu-Harvey
equation, the study of Bagger-Lambert model with boundaries [2g] is another approach to
M>5-branes from the M2-brane viewpoint.

6. Comments

6.1 Lie 3-Algebra

In this paper we discussed quite a few new examples of Lie 3-algebra of finite dimensions.
Yet we still have the basic problem of lacking any mathematical structure analogous to
the matrix algebra, which guarantees that the commutator defines a Lie algebra. The
fundamental identity appears to be much more restrictive than the Jacobi identity, and we
do not know much about how to solve it.

The truncation of a Nambu-Poisson bracket (sections B4, B.)) can be used to construct
a finite dimensional Lie 3-algebra. While the naive truncation works well, it will be desirable
to find a deformed truncation such that the final 3-algebra possesses better properties. A
possible motivation is to avoid negative norm generators in the algebra. Another example

2 can not be

is that, for the truncated Nambu bracket on S3, the radius constraint xf =r
imposed until computing the metric. Although the linear dependence among functions will
be fixed by the metric, and thus this will only result in some redundancy of the generators,
similar to what happens when we use an over-complete basis of functions on a manifold, it
would be better if this 3-algebra can be deformed such that the constraint can be imposed

directly on the generators.
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One can apply the general procedures of section B.7 to a given 3-algebra for an arbitrary
number of times to obtain more and more new examples of Lie 3-algebras. Yet it remains
to be seen how nontrivial these examples will be.

For physical applications to multiple M2-branes, since we want the M2-branes turn
into D2-branes upon compactifying a spatial direction, we hope to associate the su(N)
Lie algebra with a Lie 3-algebra for each N. So far we only know that 45 is associated
with su(2) [B9. In section B-J, we present a 3-algebra based on an arbitrary Lie algebra.
However its metric is almost trivial. It is most desirable to find Lie 3-algebras associated
to all su(N)’s.

6.2 Cubic matrices

There are a few issues regarding cubic matrices which should be studied further in the
future.

First, in the construction of higher representations, we introduced the direct product.
In case of Lie algebra, such a procedure produces reducible representations and we have to
decompose them to extract the irreducible representations. In order to do similar reduc-
tion, we need to define the corresponding notions of the direct sum representations and the
unitary equivalence between representations, i.e., representations R and R’ are equivalent
if there exists a unitary matrix U such that R/(T) = UR(T)UT. For cubic-matrix repre-
sentations, it is trivial to see that the direct sum gives a new representation. On the other
hand, in order to define the unitary equivalence, it is natural to use the Nambu bracket
R = [R, K1, K3], for some K; and Ks, and we need to impose the fundamental identity
in order to preserve the algebraic structure. However, the fundamental identity is not
satisfied for generic elements of the cubic matrices. The subset of cubic matrices which is
known to satisfy the fundamental identity is the set of objects called “normal matrices” [f].
They are, however, an analogue of diagonal matrices and give rise to a trivial change of
the representation.

Second, in this paper, we introduce only the triplet multiplication ([[.7). By composing
it, we can generate functions of odd power. This is not sufficient to produce all functions on
a fuzzy space to guarantee a proper classical limit. In order to generate a generic function,
we would need other type of products. As we commented in our previous paper [R3], for
such a direction, it will be necessary to introduce objects with more indices ¥;,...; . How
to construct a series of the products consistently remains a big challenge.

6.3 Multiple M2-branes

Recently there is a very interesting paper [R9] which proposed a novel Higgs mechanism
for the Bagger-Lambert model [B] so that the multiple M2-brane action reduces to the D2-
brane effective action upon compactification of a spatial coordinate. Later it was realized
that [BQ—BJ the moduli space for the model with the A, algebra does not match with
the moduli space for 2 M2-branes in flat space, but rather it matches with the moduli
space for an orbifold. While this is a success of the Bagger-Lambert model, it is now even
more urgent to consider more examples of 3-algebras for the Bagger-Lambert model to go
beyond a single special case. It will be very interesting to see whether some of the examples

— 925 —



provided in this work will correspond to a certain physical background for M2-branes in
M theory. It will also be very intriguing to find out the physical interpretation of the
ubiquitous zero-norm generators. In some of the examples there are also negative norm
generators, which can potentially result in ghosts in the model. Perhaps those algebras
with negative norm generators should be dismissed in certain applications, just like we
usually avoid non-compact Lie groups in certain physical problems. It will be interesting
to see whether there are other physical applications of the Lie 3-algebra besides M2-branes
physics.

Note added. After we submitted this paper to arXiv, we are informed that the relation
between the fundamental identity and the Pliicker relation was studied in [BJ where a
systematic study fundamental identity in D = 5,6, 7,8 was also carried out.

We note that there have been substantial developments [B4, Bg| on the conjecture in
section 3.8 after this paper appeared on the arXiv.
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A. Relation with Plucker relation

Here we show that there is a direct relation between the fundamental identity and Pliicker
relation which characterizes the locus of the Grassmannian manifold. This bilinear relation
appeared in a variety of context in the physical literature, such as the exactly solvable
system (KP hierarchy etc.), free fermions on Riemann surface, topological string, matrix
model and so on.® Although this relation itself is not new in mathematical literature (see
for example [[[§]), it might shed a new light in the study of the fundamental identity (R.4).

To see the relation, we rewrite the structure constant by the metric, by lowering the
Capy1 = fa17...7apbhbap+1, which gives the rank p 4+ 1 anti-
symmetric tensor. It can be identified as the coefficients of the p+ 1 vector by writing them

upper index by the metric, f,, ..

with the wedge product of the orthonormal basis of n dimensional vector space ey, - - - , e,
)= D farap€a A Aeay,, - (A1)
a1, ,ap41

8Many of the works have the origin in the identification of Hirota’s bilinear identity of the KP hierarchy
with the Pliicker relation. One of the original work is, E. Date, M. Jimbo, M. Kashiwara and T. Miwa, in
Proc. RIMS Symp. on Nonlinear Integrable Systems (Kyoto, 1981), eds. M. Jimbo and T. Miwa (World
Scientific, Singapore, 1983).
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Pliicker relation is a condition on the coefficient fs;...q,,; When the (p + 1) vector |f) is
written in the form,

lf)=VviA-AvVpyr, ve € R". (A.2)

The requirement is given by a set of bilinear relations,

p+2
k
Z(_l) fal,"'7ap7bkfb17”'7bk717bk+1:"':bp+2 =0 (A'?’)
k=1
where (a1, -+ ,ap) and (b1, -+ ,bpt2) is the arbitrary number in 1,--- ,n. The fundamental

identity is obtained from Pliicker relation by putting a; = by = a and take the sum over a.
Because of this procedure, the fundamental identity is a weaker condition than the Plicker
relation.

In particular, when

_ 6a17~~~7ap+1 ay, - 7ap+1€{17-.. 7p+ 1} A4
far, “50p+1 {0 otherwise (A4

the (p+ 1)-vector becomes |f) =e; A--- Aepy1. Therefore, it satisfies the Pliicker relation
and the fundamental identity. We note that the direct sum of this p-algebra corresponds
to the p vector of the form ey A---Aepi1+e€,10A- - Aegio+--- which is definitely not
of the form ([A.2). In this sense, the fundamental identity allows a broader set of solutions
than the Pliicker relation.

In the application to the physics, it may be useful to rewrite these relations by free

fermions. To define them, we consider space of p-vectors, H,, (p =0,1,--- ,n) where base
is spanned by exterior product of the basis, e;; A---Ae;,, (i1 < --- <ip). On this p-vector
space, we introduce “fermion” operators v;,; (i = 1,--- ,n) as
@a(eil/\u'/\eip):ea/\eil/\'--/\eip, (A.5)
P
¢a(ei1 VANEERIAN eip) = Z(—l)k_léaikeil Nee-Negy | N €ipyq " AN €, . (AG)
k=1

These operators satisfy standard anticommutation relations,

{vi,j} = 045,
The Pliicker relation and the fundamental identity is then written in terms of the fermions as,
Pliicker relation : Z¢z‘|f> ®ilf) =0, (A.8)
i=1
Fundamental identity : Z Pihil f) @ Vil f) = 0. (A.9)
i,j=1
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